
Faster Algorithms for All Pairs Non-decreasing

Paths Problem

Ran Duan, Ce Jin and Hongxun Wu

Institute for Interdisciplinary Information Sciences, Tsinghua University

1



Background



APNP

Nondecreasing Path

In a directed edge-weighted graph G, nondecreasing path

e1, e2, · · · en is a path with nondecreasing edge-weights

w(e1) ≤ w(e2) ≤ · · · ≤ w(en−1) ≤ w(en).
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APNP

Nondecreasing Path

Define weight of a path to be the weight of its last edge.

We want this weight to be as small as possible.
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APNP

Nondecreasing Path

Define weight of a path to be the weight of its last edge.

We want this weight to be as small as possible.
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APNP

Single Source Nondecresing Path (SSNP)

Single source nondecreasing path asks the following problem:

What is the minimum nondecreasing path from s to t?

All Pair Nondecresing Path (APNP)

All pair nondecreasing path asks the following problem for every

pair of vertices s and t:

What is the minimum nondecreasing path from s to t?
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(min,≤)-product

(min,≤)-product

Let A, B be two n× n matrices, their (min,≤)-product C is

Ci,k = min
k
{Bj,k|Ai,j ≤ Bj,k}

Two level APNP Instance.

Ai,j Bj,k
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Simple Observation

• Optimal prefix: If we switch the prefix from i to j to the

minimum nondecreasing path, it is still a nondecreasing path.

i j k

2

3
≥ 3

• Since the prefix of an optimal path is still an optimal path.

We can successively extend those optimal path by one edge to

find all optimal paths.

• Namely, one can compute n− 1 many (min,≤)-products to

solve APNP problem.
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Simple Observation

Ai,j Bi,j

i j k

2

3
≥ 3

• (min,≤)-product is simply two level APNP problem.

• APNP can be solve by n− 1 successive (min,≤)-products.

• But it is not associative, we cannot directly reduce it to log(n)

(min,≤)-products.

• Can we solve APNP as fast as (min,≤)-product?
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Previous Works & Our Result



Previous Works

nω
n3

(min,≤)-product

• Here ω < 2.373 is the exponent of the complexity of fast

matrix multiplication. Namely, multiplication of two n× n

matrices takes Θ(nω) time.

Theorem 1

The all pairs non-decreasing paths (APNP) problem on directed

simple graphs can be solved in Õ(n
3+ω
2 ) time.

Theorem 2

The all pairs non-decreasing paths (APNP) problem on

undirected simple graphs can be solved in Õ(n2) time.
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Õ(n
9+ω
4 )

[Williams 2010]
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Õ(n
3+ω
2 )

[Williams et al. 2007]
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8



Previous Works

nω
n3

[Duan et al. 2009]

Õ(n
3+ω
2 )

[Williams et al. 2007]
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Our algorithm for APNP on directed

simple graphs



Hign Level Idea

• Modified simplest Dijkstra algorithm

• Take high degree vertex and low degree vertex differently

• Novel divide and conquer approach

• As graph gets sparser, the matrices get smaller.

• Though still n - 1 matrix multiplications, most of them are

small.

• Simplest divide and conquer approach still has high
complexity

• Because of the existence of “high-low edges”.

• So we design an oracle which helps us handle them.
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High Degree and Low Degree

• Classify vertices according to their degrees.

• t is a parameter to be determined later.

• Low degree : ≤ n1−t edges.

• High degree : > n1−t edges.

• Edges are classified into three types according to the degree of
their end points.

• Low edges: low → high/low

• High-low edges: high → low

• High-high edges: high → high
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Dijkstra Search

Algorithm 1 Dijkstra Search for APNP

1: for minimum unvisited nondecreasing path i→ j do

2: for each edge (j, k) s.t. w(i→ j) ≤ w(j, k) do

3: Relax edge (j, k) by d(i→ k)← min(d(i→ k), w(j, k))

4: end for

5: end for

• The simplest O(n3) algorithm for APNP is a Dijkstra Search

which always visit the minimum unvisited nondecreasing path

• This procedure is very friendly to low degree vertices.

• Basic idea:
• For low degree vertices, enumerate all outgoing edges (j, k) is

efficient enough.

• For high degree vertices, the graph gets sparse after recursion,

there are only bounded number of them. We use fast matrix

multiplication to relax edges associated with high degree

vertices.
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Divide and Conquer

Algorithm 2 Divide and Conquer

1: function Solve(G)

2: Divide Graph G into G[0] and G[1] according to edge weight

3: Solve(G[0])

4: Relax high-low edges and high-high edges in G[1] w.r.t. paths

ends in G[0]

5: Solve(G[1])

6: end function

• Let’s analyze it to see what the main challenge is.

• The first step of our algorithm is to sort all edges in G. Divide

it into two disjoint subgraphs. All edge weights in G[0] is

smaller than edges weights in G[1].
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Relax High-degree edges

Algorithm 3 Divide and Conquer

1: function Solve(G)

2: Divide Graph G into G[0] and G[1] according to edge weight

3: Solve(G[0])

4: Relax high-low edges and high-high edges in G[1] w.r.t. paths

ends in G[0]

5: Solve(G[1])

6: end function

• Relaxation of edges in G[1] w.r.t. paths ends in G[0] is exactly

one step of (min,≤)-product.

• Each time, the paths are extended by one edge.
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Divide and Conquer

Algorithm 4 Divide and Conquer

1: function Solve(G)

2: Divide Graph G into G[0] and G[1] according to edge weight

3: Solve(G[0])

4: Relax high-low edges and high-high edges in G[1] w.r.t. paths

ends in G[0]

5: Solve(G[1])

6: end function

before

recursion (min,≤)-product recursion

14



Divide and Conquer

Algorithm 4 Divide and Conquer

1: function Solve(G)

2: Divide Graph G into G[0] and G[1] according to edge weight

3: Solve(G[0])

4: Relax high-low edges and high-high edges in G[1] w.r.t. paths

ends in G[0]

5: Solve(G[1])

6: end function

before
recursion

(min,≤)-product recursion

14



Divide and Conquer

Algorithm 4 Divide and Conquer

1: function Solve(G)

2: Divide Graph G into G[0] and G[1] according to edge weight

3: Solve(G[0])

4: Relax high-low edges and high-high edges in G[1] w.r.t. paths

ends in G[0]

5: Solve(G[1])

6: end function

before
recursion (min,≤)-product

recursion

14



Divide and Conquer

Algorithm 4 Divide and Conquer

1: function Solve(G)

2: Divide Graph G into G[0] and G[1] according to edge weight

3: Solve(G[0])

4: Relax high-low edges and high-high edges in G[1] w.r.t. paths

ends in G[0]

5: Solve(G[1])

6: end function

before
recursion (min,≤)-product recursion

14



Main Challenge : Complexity

• Why this procedure won’t work?

• We need to handle high-low edges and high-high edges at

same time with matrix mutliplication.

• Each level of recursion the second dimension of matrix

mutliplication is divided by 2.

i j k

A[i][j]×B[j][k]

n n≤ |E|
n1−t
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Main Challenge : Complexity

 A[i][j] ×

 B[i][j]

×

  ( )
×

  ( )
n

m

n

m/2

• The second dimension is divided by 2. For bruteforce Θ(n3)

matrix multiplication, the complexity of matrix multiplication

is divide by 2 as well.

• But for Θ(nω) fast square matrix mutliplication, the

complexity is divided by some constant less than 2.

• Difficulty: The number of subproblems grows faster!
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New idea for high-low edges

• We came up with a new technique for high-low edges.

• Thus in each layer of recursion we only have to care about

high-high edges.

• Both dimensions are divided by 2 in recursion now.

A[i][j]×B[j][k]

n ≤ |E|
n1−t≤ |E|

n1−t

17
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New idea for High-low edges

i j k
Bk,j

Ai,k

• If there is an optimal nondecreasing path i→ k with a

high-low edge as its last edge, we can enumerate all in-coming

edges of k to find it.

18



New idea for High-low edges

i j k
Bk,j

Ai,k

• We need an oracle to “predict” the existence of such path
i→ k.

• Ai,k = 1 if we haven’t found path from i to k.

• Bk,j = 1 if there is an edge (j, k).

• We compute Ci,j =
∑

k Ai,kBk,j

18
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New idea for High-low edges

i j k
Bk,j

Ai,k

• When we visit path i→ j and Ci,j > 0, we then enumerate all

outgoing edges of j to update path i→ k.

• After we find a nondecreasing path i→ k, we enumerate
incoming edges (j′, k) of k for two purposes:
• Find the optimal nondecreasing path i→ k.

• Decrease Ci,j′ by one, so we won’t enumerate for the same

path i→ k twice.
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New idea for High-low edges

• What is the point of this technique if it still needs matrix
multiplication?

• This technique can relax all high-low edges without recursion!

Unlike (min,≤)-product, it is “dynamic” and friendly to

sequential updates.

• High-high edges

recursion
before (min,≤)-product

recursion

• Low edges / High-low edges

• In each layer of recursion, since low edges and high-low edges

are already handled, we only keep those high degree vertices to

next layer!
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Divide and Conquer

We only divide the induced subgraph of high degree vertices.

• As the graph is getting sparser, the nubmer of vertices

decrease. The third dimension of matrix mutliplication also

decreasing now!
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Our algorithm

Algorithm 5 Divide and Conquer

1: function Solve(G)

2: Run the matrix multiplication for high-low edges

3: Divide the induced graph of high vertices into G[0], G[1]

4: Solve(G[0])

5: Relax high-high edges in G[1] w.r.t. paths ends in G[0]

6: Solve(G[1])

7: end function

• We relax low edges and high-low edges when we visit path

i→ j.

• So they are relaxed at the leaves of the recursion.
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Our algorithm

• The recursion tree looks like following:

G

G[0]

G[00]

...

G[0...00] G[0...01]

...

G[01]

...
...

G[1]

G[10]

...
...

G[11]

...
...

G[1...10] G[1...11]· · ·

• When we reach a leaf, we “visit” the path of that weight.

• It is still a Dijkstra Search.
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Time Complexity

G

G[0]

...

G[0...00] G[0...01]

...

G[1]

...
...

G[1...10] G[1...11]
· · ·

#edges #high vertices Complexity

n2 n nω

n2/2 n 2nω

...
...

...

n2−t n nt+ω

n2−t/2 n/2 < nt+ω

...
...

...

• Enumeration takes O(n3−t) time, since each pair of vertices is

responsible for O(n1−t) enumeration.

• When the number of edges is less than n2−t, the number of
high vertices starts decrease linearly.

• So the maximum complexity of matrix mutliplication for each

layer is O(nt+ω)
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Conclusion & Open problems

• APNP algorithm in Õ(n
3+ω
2 ) time.

• All these problem now have best running algorithm in time

Õ(n
3+ω
2 ).

(min,≤)-product All Pair Nondecreasing Path (APNP)

(max,min)-product All Pair Bottleneck Path (APBP)

• Is there faster algoirthm for these problems? Can we show

some lower bounds for these porblems?
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Õ(n
3+ω
2 ).

(min,≤)-product All Pair Nondecreasing Path (APNP)

(max,min)-product All Pair Bottleneck Path (APBP)

• Is there faster algoirthm for these problems? Can we show

some lower bounds for these porblems?

25



Q & A

Questions?

Thank you!

26


	Background
	Previous Works & Our Result
	Our algorithm for APNP on directed simple graphs
	Conclusion

