
Faster Algorithms for All Pairs Non-decreasing

Paths Problem

Ran Duan, Ce Jin and Hongxun Wu

Institute for Interdisciplinary Information Sciences, Tsinghua University

1

Background

APNP

Nondecreasing Path

In a directed edge-weighted graph G, nondecreasing path

e1, e2, · · · en is a path with nondecreasing edge-weights

w(e1) ≤ w(e2) ≤ · · · ≤ w(en−1) ≤ w(en).

1 2

44
3

33

6

1 2

4
3

33

6

2

APNP

Nondecreasing Path

In a directed edge-weighted graph G, nondecreasing path

e1, e2, · · · en is a path with nondecreasing edge-weights

w(e1) ≤ w(e2) ≤ · · · ≤ w(en−1) ≤ w(en).

1 2

44
3

33

6

1 2

4
3

33

6

2

APNP

Nondecreasing Path

In a directed edge-weighted graph G, nondecreasing path

e1, e2, · · · en is a path with nondecreasing edge-weights

w(e1) ≤ w(e2) ≤ · · · ≤ w(en−1) ≤ w(en).

1 2

44
3

33

6

1 2

4
3

33

6

2

APNP

Nondecreasing Path

In a directed edge-weighted graph G, nondecreasing path

e1, e2, · · · en is a path with nondecreasing edge-weights

w(e1) ≤ w(e2) ≤ · · · ≤ w(en−1) ≤ w(en).

1 2

44
3

33

6

1 2

4
3

33

6

2

APNP

Nondecreasing Path

In a directed edge-weighted graph G, nondecreasing path

e1, e2, · · · en is a path with nondecreasing edge-weights

w(e1) ≤ w(e2) ≤ · · · ≤ w(en−1) ≤ w(en).

1 2

44
3

33

6

1 2

4
3

33

6

2

APNP

Nondecreasing Path

In a directed edge-weighted graph G, nondecreasing path

e1, e2, · · · en is a path with nondecreasing edge-weights

w(e1) ≤ w(e2) ≤ · · · ≤ w(en−1) ≤ w(en).

1 2

44
3

33

6

1 2

4
3

33

6

2

APNP

Nondecreasing Path

In a directed edge-weighted graph G, nondecreasing path

e1, e2, · · · en is a path with nondecreasing edge-weights

w(e1) ≤ w(e2) ≤ · · · ≤ w(en−1) ≤ w(en).

1 2

44
3

33

6

1 2

4
3

33

6

2

APNP

Nondecreasing Path

In a directed edge-weighted graph G, nondecreasing path

e1, e2, · · · en is a path with nondecreasing edge-weights

w(e1) ≤ w(e2) ≤ · · · ≤ w(en−1) ≤ w(en).

1 2

44
3

33

6

1 2

4
3

33

6

2

APNP

Nondecreasing Path

In a directed edge-weighted graph G, nondecreasing path

e1, e2, · · · en is a path with nondecreasing edge-weights

w(e1) ≤ w(e2) ≤ · · · ≤ w(en−1) ≤ w(en).

1 2

44
3

33

6

1 2

4
3

33

6

2

APNP

Nondecreasing Path

In a directed edge-weighted graph G, nondecreasing path

e1, e2, · · · en is a path with nondecreasing edge-weights

w(e1) ≤ w(e2) ≤ · · · ≤ w(en−1) ≤ w(en).

1 2

44
3

33

6

1 2

4
3

33

6

2

APNP

Nondecreasing Path

Define weight of a path to be the weight of its last edge.

We want this weight to be as small as possible.

1 2

4
3

33

6 ≤

1 2

4
3

33

6

3

APNP

Nondecreasing Path

Define weight of a path to be the weight of its last edge.

We want this weight to be as small as possible.

1 2

4
3

33

6 ≤

1 2

4
3

33

6

3

APNP

Single Source Nondecresing Path (SSNP)

Single source nondecreasing path asks the following problem:

What is the minimum nondecreasing path from s to t?

All Pair Nondecresing Path (APNP)

All pair nondecreasing path asks the following problem for every

pair of vertices s and t:

What is the minimum nondecreasing path from s to t?

4

(min,≤)-product

(min,≤)-product

Let A, B be two n× n matrices, their (min,≤)-product C is

Ci,k = min
k
{Bj,k|Ai,j ≤ Bj,k}

Two level APNP Instance.

Ai,j Bj,k

5

Simple Observation

• Optimal prefix: If we switch the prefix from i to j to the

minimum nondecreasing path, it is still a nondecreasing path.

i j k

2

3
≥ 3

• Since the prefix of an optimal path is still an optimal path.

We can successively extend those optimal path by one edge to

find all optimal paths.

• Namely, one can compute n− 1 many (min,≤)-products to

solve APNP problem.

6

Simple Observation

• Optimal prefix: If we switch the prefix from i to j to the

minimum nondecreasing path, it is still a nondecreasing path.

i j k

2

3
≥ 3

• Since the prefix of an optimal path is still an optimal path.

We can successively extend those optimal path by one edge to

find all optimal paths.

• Namely, one can compute n− 1 many (min,≤)-products to

solve APNP problem.

6

Simple Observation

• Optimal prefix: If we switch the prefix from i to j to the

minimum nondecreasing path, it is still a nondecreasing path.

i j k

2

3

≥ 3

• Since the prefix of an optimal path is still an optimal path.

We can successively extend those optimal path by one edge to

find all optimal paths.

• Namely, one can compute n− 1 many (min,≤)-products to

solve APNP problem.

6

Simple Observation

• Optimal prefix: If we switch the prefix from i to j to the

minimum nondecreasing path, it is still a nondecreasing path.

i j k

2

3

≥ 3

• Since the prefix of an optimal path is still an optimal path.

We can successively extend those optimal path by one edge to

find all optimal paths.

• Namely, one can compute n− 1 many (min,≤)-products to

solve APNP problem.

6

Simple Observation

• Optimal prefix: If we switch the prefix from i to j to the

minimum nondecreasing path, it is still a nondecreasing path.

i j k

2

3

≥ 3

• Since the prefix of an optimal path is still an optimal path.

We can successively extend those optimal path by one edge to

find all optimal paths.

• Namely, one can compute n− 1 many (min,≤)-products to

solve APNP problem.

6

Simple Observation

Ai,j Bi,j

i j k

2

3
≥ 3

• (min,≤)-product is simply two level APNP problem.

• APNP can be solve by n− 1 successive (min,≤)-products.

• But it is not associative, we cannot directly reduce it to log(n)

(min,≤)-products.

• Can we solve APNP as fast as (min,≤)-product?

7

Simple Observation

Ai,j Bi,j

i j k

2

3
≥ 3

• (min,≤)-product is simply two level APNP problem.

• APNP can be solve by n− 1 successive (min,≤)-products.

• But it is not associative, we cannot directly reduce it to log(n)

(min,≤)-products.

• Can we solve APNP as fast as (min,≤)-product?

7

Simple Observation

Ai,j Bi,j

i j k

2

3
≥ 3

• (min,≤)-product is simply two level APNP problem.

• APNP can be solve by n− 1 successive (min,≤)-products.

• But it is not associative, we cannot directly reduce it to log(n)

(min,≤)-products.

• Can we solve APNP as fast as (min,≤)-product?

7

Simple Observation

Ai,j Bi,j

i j k

2

3
≥ 3

• (min,≤)-product is simply two level APNP problem.

• APNP can be solve by n− 1 successive (min,≤)-products.

• But it is not associative, we cannot directly reduce it to log(n)

(min,≤)-products.

• Can we solve APNP as fast as (min,≤)-product? Yes!

7

Previous Works & Our Result

Previous Works

nω
n3

(min,≤)-product

• Here ω < 2.373 is the exponent of the complexity of fast

matrix multiplication. Namely, multiplication of two n× n

matrices takes Θ(nω) time.

Theorem 1

The all pairs non-decreasing paths (APNP) problem on directed

simple graphs can be solved in Õ(n
3+ω
2) time.

Theorem 2

The all pairs non-decreasing paths (APNP) problem on

undirected simple graphs can be solved in Õ(n2) time.

8

Previous Works

nω
n3

[Williams et al. 2007]

Õ(n2+ω
3)

(min,≤)-product

• Here ω < 2.373 is the exponent of the complexity of fast

matrix multiplication. Namely, multiplication of two n× n

matrices takes Θ(nω) time.

Theorem 1

The all pairs non-decreasing paths (APNP) problem on directed

simple graphs can be solved in Õ(n
3+ω
2) time.

Theorem 2

The all pairs non-decreasing paths (APNP) problem on

undirected simple graphs can be solved in Õ(n2) time.

8

Previous Works

nω
n3

[Duan et al. 2009]

Õ(n
3+ω
2)

[Williams et al. 2007]

Õ(n2+ω
3)

(min,≤)-product

• Here ω < 2.373 is the exponent of the complexity of fast

matrix multiplication. Namely, multiplication of two n× n

matrices takes Θ(nω) time.

Theorem 1

The all pairs non-decreasing paths (APNP) problem on directed

simple graphs can be solved in Õ(n
3+ω
2) time.

Theorem 2

The all pairs non-decreasing paths (APNP) problem on

undirected simple graphs can be solved in Õ(n2) time.

8

Previous Works

nω
n3

[Duan et al. 2009]

Õ(n
3+ω
2)

[Williams et al. 2007]

Õ(n2+ω
3)

(min,≤)-product

APNP

Õ(n
9+ω
4)

[Williams 2010]

• Here ω < 2.373 is the exponent of the complexity of fast

matrix multiplication. Namely, multiplication of two n× n

matrices takes Θ(nω) time.

Theorem 1

The all pairs non-decreasing paths (APNP) problem on directed

simple graphs can be solved in Õ(n
3+ω
2) time.

Theorem 2

The all pairs non-decreasing paths (APNP) problem on

undirected simple graphs can be solved in Õ(n2) time.

8

Previous Works

nω
n3

[Duan et al. 2009]

Õ(n
3+ω
2)

[Williams et al. 2007]

Õ(n2+ω
3)

(min,≤)-product

APNP

Õ(n
9+ω
4)

[Williams 2010]

Õ(n2+ω
3)

[Duan et al. 2018] .

• Here ω < 2.373 is the exponent of the complexity of fast

matrix multiplication. Namely, multiplication of two n× n

matrices takes Θ(nω) time.

Theorem 1

The all pairs non-decreasing paths (APNP) problem on directed

simple graphs can be solved in Õ(n
3+ω
2) time.

Theorem 2

The all pairs non-decreasing paths (APNP) problem on

undirected simple graphs can be solved in Õ(n2) time.

8

Previous Works

nω
n3

[Duan et al. 2009]

Õ(n
3+ω
2)

[Williams et al. 2007]

Õ(n2+ω
3)

(min,≤)-product

APNP

Õ(n
9+ω
4)

[Williams 2010]

Õ(n2+ω
3)

[Duan et al. 2018] .

This work

Theorem 1

The all pairs non-decreasing paths (APNP) problem on directed

simple graphs can be solved in Õ(n
3+ω
2) time.

Theorem 2

The all pairs non-decreasing paths (APNP) problem on

undirected simple graphs can be solved in Õ(n2) time.

8

Previous Works

nω
n3

[Duan et al. 2009]

Õ(n
3+ω
2)

[Williams et al. 2007]

Õ(n2+ω
3)

(min,≤)-product

APNP

Õ(n
9+ω
4)

[Williams 2010]

Õ(n2+ω
3)

[Duan et al. 2018] .

This work

Theorem 1

The all pairs non-decreasing paths (APNP) problem on directed

simple graphs can be solved in Õ(n
3+ω
2) time.

Theorem 2

The all pairs non-decreasing paths (APNP) problem on

undirected simple graphs can be solved in Õ(n2) time.

8

Our algorithm for APNP on directed

simple graphs

Hign Level Idea

• Modified simplest Dijkstra algorithm

• Take high degree vertex and low degree vertex differently

• Novel divide and conquer approach

• As graph gets sparser, the matrices get smaller.

• Though still n - 1 matrix multiplications, most of them are

small.

• Simplest divide and conquer approach still has high
complexity

• Because of the existence of “high-low edges”.

• So we design an oracle which helps us handle them.

9

Hign Level Idea

• Modified simplest Dijkstra algorithm

• Take high degree vertex and low degree vertex differently

• Novel divide and conquer approach

• As graph gets sparser, the matrices get smaller.

• Though still n - 1 matrix multiplications, most of them are

small.

• Simplest divide and conquer approach still has high
complexity

• Because of the existence of “high-low edges”.

• So we design an oracle which helps us handle them.

9

Hign Level Idea

• Modified simplest Dijkstra algorithm

• Take high degree vertex and low degree vertex differently

• Novel divide and conquer approach

• As graph gets sparser, the matrices get smaller.

• Though still n - 1 matrix multiplications, most of them are

small.

• Simplest divide and conquer approach still has high
complexity

• Because of the existence of “high-low edges”.

• So we design an oracle which helps us handle them.

9

Hign Level Idea

• Modified simplest Dijkstra algorithm

• Take high degree vertex and low degree vertex differently

• Novel divide and conquer approach

• As graph gets sparser, the matrices get smaller.

• Though still n - 1 matrix multiplications, most of them are

small.

• Simplest divide and conquer approach still has high
complexity

• Because of the existence of “high-low edges”.

• So we design an oracle which helps us handle them.

9

Hign Level Idea

• Modified simplest Dijkstra algorithm

• Take high degree vertex and low degree vertex differently

• Novel divide and conquer approach

• As graph gets sparser, the matrices get smaller.

• Though still n - 1 matrix multiplications, most of them are

small.

• Simplest divide and conquer approach still has high
complexity

• Because of the existence of “high-low edges”.

• So we design an oracle which helps us handle them.

9

Hign Level Idea

• Modified simplest Dijkstra algorithm

• Take high degree vertex and low degree vertex differently

• Novel divide and conquer approach

• As graph gets sparser, the matrices get smaller.

• Though still n - 1 matrix multiplications, most of them are

small.

• Simplest divide and conquer approach still has high
complexity

• Because of the existence of “high-low edges”.

• So we design an oracle which helps us handle them.

9

Hign Level Idea

• Modified simplest Dijkstra algorithm

• Take high degree vertex and low degree vertex differently

• Novel divide and conquer approach

• As graph gets sparser, the matrices get smaller.

• Though still n - 1 matrix multiplications, most of them are

small.

• Simplest divide and conquer approach still has high
complexity

• Because of the existence of “high-low edges”.

• So we design an oracle which helps us handle them.

9

Hign Level Idea

• Modified simplest Dijkstra algorithm

• Take high degree vertex and low degree vertex differently

• Novel divide and conquer approach

• As graph gets sparser, the matrices get smaller.

• Though still n - 1 matrix multiplications, most of them are

small.

• Simplest divide and conquer approach still has high
complexity

• Because of the existence of “high-low edges”.

• So we design an oracle which helps us handle them.

9

High Degree and Low Degree

• Classify vertices according to their degrees.

• t is a parameter to be determined later.

• Low degree : ≤ n1−t edges.

• High degree : > n1−t edges.

• Edges are classified into three types according to the degree of
their end points.

• Low edges: low → high/low

• High-low edges: high → low

• High-high edges: high → high

10

High Degree and Low Degree

• Classify vertices according to their degrees.

• t is a parameter to be determined later.

• Low degree : ≤ n1−t edges.

• High degree : > n1−t edges.

• Edges are classified into three types according to the degree of
their end points.

• Low edges: low → high/low

• High-low edges: high → low

• High-high edges: high → high

10

Dijkstra Search

Algorithm 1 Dijkstra Search for APNP

1: for minimum unvisited nondecreasing path i→ j do

2: for each edge (j, k) s.t. w(i→ j) ≤ w(j, k) do

3: Relax edge (j, k) by d(i→ k)← min(d(i→ k), w(j, k))

4: end for

5: end for

• The simplest O(n3) algorithm for APNP is a Dijkstra Search

which always visit the minimum unvisited nondecreasing path

• This procedure is very friendly to low degree vertices.

• Basic idea:
• For low degree vertices, enumerate all outgoing edges (j, k) is

efficient enough.

• For high degree vertices, the graph gets sparse after recursion,

there are only bounded number of them. We use fast matrix

multiplication to relax edges associated with high degree

vertices.

11

Dijkstra Search

Algorithm 1 Dijkstra Search for APNP

1: for minimum unvisited nondecreasing path i→ j do

2: for each edge (j, k) s.t. w(i→ j) ≤ w(j, k) do

3: Relax edge (j, k) by d(i→ k)← min(d(i→ k), w(j, k))

4: end for

5: end for

• The simplest O(n3) algorithm for APNP is a Dijkstra Search

which always visit the minimum unvisited nondecreasing path

• This procedure is very friendly to low degree vertices.

• Basic idea:
• For low degree vertices, enumerate all outgoing edges (j, k) is

efficient enough.

• For high degree vertices, the graph gets sparse after recursion,

there are only bounded number of them. We use fast matrix

multiplication to relax edges associated with high degree

vertices.

11

Dijkstra Search

Algorithm 1 Dijkstra Search for APNP

1: for minimum unvisited nondecreasing path i→ j do

2: for each edge (j, k) s.t. w(i→ j) ≤ w(j, k) do

3: Relax edge (j, k) by d(i→ k)← min(d(i→ k), w(j, k))

4: end for

5: end for

• Basic idea:
• For low degree vertices, enumerate all outgoing edges (j, k) is

efficient enough.

• For high degree vertices, the graph gets sparse after recursion,

there are only bounded number of them. We use fast matrix

multiplication to relax edges associated with high degree

vertices.
11

Divide and Conquer

Algorithm 2 Divide and Conquer

1: function Solve(G)

2: Divide Graph G into G[0] and G[1] according to edge weight

3: Solve(G[0])

4: Relax high-low edges and high-high edges in G[1] w.r.t. paths

ends in G[0]

5: Solve(G[1])

6: end function

• Let’s analyze it to see what the main challenge is.

• The first step of our algorithm is to sort all edges in G. Divide

it into two disjoint subgraphs. All edge weights in G[0] is

smaller than edges weights in G[1].

12

Divide and Conquer

Algorithm 2 Divide and Conquer

1: function Solve(G)

2: Divide Graph G into G[0] and G[1] according to edge weight

3: Solve(G[0])

4: Relax high-low edges and high-high edges in G[1] w.r.t. paths

ends in G[0]

5: Solve(G[1])

6: end function

• Let’s analyze it to see what the main challenge is.

• The first step of our algorithm is to sort all edges in G. Divide

it into two disjoint subgraphs. All edge weights in G[0] is

smaller than edges weights in G[1].

12

Relax High-degree edges

Algorithm 3 Divide and Conquer

1: function Solve(G)

2: Divide Graph G into G[0] and G[1] according to edge weight

3: Solve(G[0])

4: Relax high-low edges and high-high edges in G[1] w.r.t. paths

ends in G[0]

5: Solve(G[1])

6: end function

• Relaxation of edges in G[1] w.r.t. paths ends in G[0] is exactly

one step of (min,≤)-product.

• Each time, the paths are extended by one edge.

13

Divide and Conquer

Algorithm 4 Divide and Conquer

1: function Solve(G)

2: Divide Graph G into G[0] and G[1] according to edge weight

3: Solve(G[0])

4: Relax high-low edges and high-high edges in G[1] w.r.t. paths

ends in G[0]

5: Solve(G[1])

6: end function

before

recursion (min,≤)-product recursion

14

Divide and Conquer

Algorithm 4 Divide and Conquer

1: function Solve(G)

2: Divide Graph G into G[0] and G[1] according to edge weight

3: Solve(G[0])

4: Relax high-low edges and high-high edges in G[1] w.r.t. paths

ends in G[0]

5: Solve(G[1])

6: end function

before
recursion

(min,≤)-product recursion

14

Divide and Conquer

Algorithm 4 Divide and Conquer

1: function Solve(G)

2: Divide Graph G into G[0] and G[1] according to edge weight

3: Solve(G[0])

4: Relax high-low edges and high-high edges in G[1] w.r.t. paths

ends in G[0]

5: Solve(G[1])

6: end function

before
recursion (min,≤)-product

recursion

14

Divide and Conquer

Algorithm 4 Divide and Conquer

1: function Solve(G)

2: Divide Graph G into G[0] and G[1] according to edge weight

3: Solve(G[0])

4: Relax high-low edges and high-high edges in G[1] w.r.t. paths

ends in G[0]

5: Solve(G[1])

6: end function

before
recursion (min,≤)-product recursion

14

Main Challenge : Complexity

• Why this procedure won’t work?

• We need to handle high-low edges and high-high edges at

same time with matrix mutliplication.

• Each level of recursion the second dimension of matrix

mutliplication is divided by 2.

i j k

A[i][j]×B[j][k]

n n≤ |E|
n1−t

15

Main Challenge : Complexity

• Why this procedure won’t work?

• We need to handle high-low edges and high-high edges at

same time with matrix mutliplication.

• Each level of recursion the second dimension of matrix

mutliplication is divided by 2.

i j k

A[i][j]×B[j][k]

n n≤ |E|
n1−t

15

Main Challenge : Complexity

 A[i][j] ×

 B[i][j]

×

 ()
×

 ()
n

m

n

m/2

• The second dimension is divided by 2. For bruteforce Θ(n3)

matrix multiplication, the complexity of matrix multiplication

is divide by 2 as well.

• But for Θ(nω) fast square matrix mutliplication, the

complexity is divided by some constant less than 2.

• Difficulty: The number of subproblems grows faster!

16

Main Challenge : Complexity

 A[i][j] ×

 B[i][j]

×

 ()
×

 ()
n

m

n

m/2

• The second dimension is divided by 2. For bruteforce Θ(n3)

matrix multiplication, the complexity of matrix multiplication

is divide by 2 as well.

• But for Θ(nω) fast square matrix mutliplication, the

complexity is divided by some constant less than 2.

• Difficulty: The number of subproblems grows faster!

16

Main Challenge : Complexity

 A[i][j] ×

 B[i][j]

×

 ()
×

 ()
n

m

n

m/2

• The second dimension is divided by 2. For bruteforce Θ(n3)

matrix multiplication, the complexity of matrix multiplication

is divide by 2 as well.

• But for Θ(nω) fast square matrix mutliplication, the

complexity is divided by some constant less than 2.

• Difficulty: The number of subproblems grows faster!
16

New idea for high-low edges

• We came up with a new technique for high-low edges.

• Thus in each layer of recursion we only have to care about

high-high edges.

• Both dimensions are divided by 2 in recursion now.

A[i][j]×B[j][k]

n ≤ |E|
n1−t≤ |E|

n1−t

17

New idea for high-low edges

• We came up with a new technique for high-low edges.

• Thus in each layer of recursion we only have to care about

high-high edges.

• Both dimensions are divided by 2 in recursion now.

A[i][j]×B[j][k]

n ≤ |E|
n1−t≤ |E|

n1−t

17

New idea for High-low edges

i j k
Bk,j

Ai,k

• If there is an optimal nondecreasing path i→ k with a

high-low edge as its last edge, we can enumerate all in-coming

edges of k to find it.

18

New idea for High-low edges

i j k
Bk,j

Ai,k

• We need an oracle to “predict” the existence of such path
i→ k.

• Ai,k = 1 if we haven’t found path from i to k.

• Bk,j = 1 if there is an edge (j, k).

• We compute Ci,j =
∑

k Ai,kBk,j

18

New idea for High-low edges

i j k
Bk,j

Ai,k

• We need an oracle to “predict” the existence of such path
i→ k.

• Ai,k = 1 if we haven’t found path from i to k.

• Bk,j = 1 if there is an edge (j, k).

• We compute Ci,j =
∑

k Ai,kBk,j

18

New idea for High-low edges

i j k
Bk,j

Ai,k

• We need an oracle to “predict” the existence of such path
i→ k.

• Ai,k = 1 if we haven’t found path from i to k.

• Bk,j = 1 if there is an edge (j, k).

• We compute Ci,j =
∑

k Ai,kBk,j

18

New idea for High-low edges

i j k
Bk,j

Ai,k

• We need an oracle to “predict” the existence of such path
i→ k.

• Ai,k = 1 if we haven’t found path from i to k.

• Bk,j = 1 if there is an edge (j, k).

• We compute Ci,j =
∑

k Ai,kBk,j

18

New idea for High-low edges

i j k
Bk,j

Ai,k

• When we visit path i→ j and Ci,j > 0, we then enumerate all

outgoing edges of j to update path i→ k.

• After we find a nondecreasing path i→ k, we enumerate
incoming edges (j′, k) of k for two purposes:
• Find the optimal nondecreasing path i→ k.

• Decrease Ci,j′ by one, so we won’t enumerate for the same

path i→ k twice.

19

New idea for High-low edges

i j k
Bk,j

Ai,k

• When we visit path i→ j and Ci,j > 0, we then enumerate all

outgoing edges of j to update path i→ k.

• After we find a nondecreasing path i→ k, we enumerate
incoming edges (j′, k) of k for two purposes:
• Find the optimal nondecreasing path i→ k.

• Decrease Ci,j′ by one, so we won’t enumerate for the same

path i→ k twice.

19

New idea for High-low edges

i j k
Bk,j

Ai,k

• When we visit path i→ j and Ci,j > 0, we then enumerate all

outgoing edges of j to update path i→ k.

• What if j has high degree ?

• After we find a nondecreasing path i→ k, we enumerate
incoming edges (j′, k) of k for two purposes:
• Find the optimal nondecreasing path i→ k.

• Decrease Ci,j′ by one, so we won’t enumerate for the same

path i→ k twice.

19

New idea for High-low edges

i j k
Bk,j

Ai,k

• When we visit path i→ j and Ci,j > 0, we then enumerate all

outgoing edges of j to update path i→ k.
• After we find a nondecreasing path i→ k, we enumerate

incoming edges (j′, k) of k for two purposes:
• Find the optimal nondecreasing path i→ k.

• Decrease Ci,j′ by one, so we won’t enumerate for the same

path i→ k twice.

19

New idea for High-low edges

• What is the point of this technique if it still needs matrix
multiplication?

• This technique can relax all high-low edges without recursion!

Unlike (min,≤)-product, it is “dynamic” and friendly to

sequential updates.

• High-high edges

recursion
before (min,≤)-product

recursion

• Low edges / High-low edges

• In each layer of recursion, since low edges and high-low edges

are already handled, we only keep those high degree vertices to

next layer!

20

New idea for High-low edges

• What is the point of this technique if it still needs matrix
multiplication?
• This technique can relax all high-low edges without recursion!

Unlike (min,≤)-product, it is “dynamic” and friendly to

sequential updates.

• High-high edges

recursion
before (min,≤)-product

recursion

• Low edges / High-low edges

• In each layer of recursion, since low edges and high-low edges

are already handled, we only keep those high degree vertices to

next layer!

20

New idea for High-low edges

• What is the point of this technique if it still needs matrix
multiplication?
• This technique can relax all high-low edges without recursion!

Unlike (min,≤)-product, it is “dynamic” and friendly to

sequential updates.

• High-high edges

recursion
before (min,≤)-product

recursion

• Low edges / High-low edges

• In each layer of recursion, since low edges and high-low edges

are already handled, we only keep those high degree vertices to

next layer!

20

New idea for High-low edges

• What is the point of this technique if it still needs matrix
multiplication?
• This technique can relax all high-low edges without recursion!

Unlike (min,≤)-product, it is “dynamic” and friendly to

sequential updates.

• High-high edges

recursion
before (min,≤)-product

recursion

• Low edges / High-low edges

• In each layer of recursion, since low edges and high-low edges

are already handled, we only keep those high degree vertices to

next layer!

20

New idea for High-low edges

• What is the point of this technique if it still needs matrix
multiplication?
• This technique can relax all high-low edges without recursion!

Unlike (min,≤)-product, it is “dynamic” and friendly to

sequential updates.

• High-high edges

recursion
before (min,≤)-product

recursion

• Low edges / High-low edges

• In each layer of recursion, since low edges and high-low edges

are already handled, we only keep those high degree vertices to

next layer!

20

New idea for High-low edges

• What is the point of this technique if it still needs matrix
multiplication?
• This technique can relax all high-low edges without recursion!

Unlike (min,≤)-product, it is “dynamic” and friendly to

sequential updates.

• High-high edges

recursion
before (min,≤)-product

recursion

• Low edges / High-low edges

• In each layer of recursion, since low edges and high-low edges

are already handled, we only keep those high degree vertices to

next layer!

20

New idea for High-low edges

• What is the point of this technique if it still needs matrix
multiplication?
• This technique can relax all high-low edges without recursion!

Unlike (min,≤)-product, it is “dynamic” and friendly to

sequential updates.

• High-high edges

recursion
before (min,≤)-product

recursion

• Low edges / High-low edges

• In each layer of recursion, since low edges and high-low edges

are already handled, we only keep those high degree vertices to

next layer!

20

New idea for High-low edges

• What is the point of this technique if it still needs matrix
multiplication?
• This technique can relax all high-low edges without recursion!

Unlike (min,≤)-product, it is “dynamic” and friendly to

sequential updates.

• High-high edges

recursion
before (min,≤)-product

recursion

• Low edges / High-low edges

• In each layer of recursion, since low edges and high-low edges

are already handled, we only keep those high degree vertices to

next layer!

20

New idea for High-low edges

• What is the point of this technique if it still needs matrix
multiplication?
• This technique can relax all high-low edges without recursion!

Unlike (min,≤)-product, it is “dynamic” and friendly to

sequential updates.

• High-high edges

recursion
before (min,≤)-product

recursion

• Low edges / High-low edges

• In each layer of recursion, since low edges and high-low edges

are already handled, we only keep those high degree vertices to

next layer!

20

New idea for High-low edges

• What is the point of this technique if it still needs matrix
multiplication?
• This technique can relax all high-low edges without recursion!

Unlike (min,≤)-product, it is “dynamic” and friendly to

sequential updates.

• High-high edges

recursion
before (min,≤)-product

recursion

• Low edges / High-low edges

• In each layer of recursion, since low edges and high-low edges

are already handled, we only keep those high degree vertices to

next layer!

20

New idea for High-low edges

• What is the point of this technique if it still needs matrix
multiplication?
• This technique can relax all high-low edges without recursion!

Unlike (min,≤)-product, it is “dynamic” and friendly to

sequential updates.

• High-high edges

recursion
before (min,≤)-product

recursion

• Low edges / High-low edges

• In each layer of recursion, since low edges and high-low edges

are already handled, we only keep those high degree vertices to

next layer!

20

New idea for High-low edges

• What is the point of this technique if it still needs matrix
multiplication?
• This technique can relax all high-low edges without recursion!

Unlike (min,≤)-product, it is “dynamic” and friendly to

sequential updates.

• High-high edges

recursion
before (min,≤)-product

recursion

• Low edges / High-low edges

• In each layer of recursion, since low edges and high-low edges

are already handled, we only keep those high degree vertices to

next layer!

20

New idea for High-low edges

• What is the point of this technique if it still needs matrix
multiplication?
• This technique can relax all high-low edges without recursion!

Unlike (min,≤)-product, it is “dynamic” and friendly to

sequential updates.

• High-high edges

recursion
before (min,≤)-product

recursion

• Low edges / High-low edges

• In each layer of recursion, since low edges and high-low edges

are already handled, we only keep those high degree vertices to

next layer!

20

New idea for High-low edges

• What is the point of this technique if it still needs matrix
multiplication?
• This technique can relax all high-low edges without recursion!

Unlike (min,≤)-product, it is “dynamic” and friendly to

sequential updates.

• High-high edges

recursion
before (min,≤)-product

recursion

• Low edges / High-low edges

• In each layer of recursion, since low edges and high-low edges

are already handled, we only keep those high degree vertices to

next layer!

20

New idea for High-low edges

• What is the point of this technique if it still needs matrix
multiplication?
• This technique can relax all high-low edges without recursion!

Unlike (min,≤)-product, it is “dynamic” and friendly to

sequential updates.

• High-high edges

recursion
before (min,≤)-product

recursion

• Low edges / High-low edges

• In each layer of recursion, since low edges and high-low edges

are already handled, we only keep those high degree vertices to

next layer!

20

Divide and Conquer

We only divide the induced subgraph of high degree vertices.

• As the graph is getting sparser, the nubmer of vertices

decrease. The third dimension of matrix mutliplication also

decreasing now!

21

Our algorithm

Algorithm 5 Divide and Conquer

1: function Solve(G)

2: Run the matrix multiplication for high-low edges

3: Divide the induced graph of high vertices into G[0], G[1]

4: Solve(G[0])

5: Relax high-high edges in G[1] w.r.t. paths ends in G[0]

6: Solve(G[1])

7: end function

• We relax low edges and high-low edges when we visit path

i→ j.

• So they are relaxed at the leaves of the recursion.

22

Our algorithm

• The recursion tree looks like following:

G

G[0]

G[00]

...

G[0...00] G[0...01]

...

G[01]

...
...

G[1]

G[10]

...
...

G[11]

...
...

G[1...10] G[1...11]· · ·

• When we reach a leaf, we “visit” the path of that weight.

• It is still a Dijkstra Search.

23

Time Complexity

G

G[0]

...

G[0...00] G[0...01]

...

G[1]

...
...

G[1...10] G[1...11]
· · ·

#edges #high vertices Complexity

n2 n nω

n2/2 n 2nω

...
...

...

n2−t n nt+ω

n2−t/2 n/2 < nt+ω

...
...

...

• Enumeration takes O(n3−t) time, since each pair of vertices is

responsible for O(n1−t) enumeration.

• When the number of edges is less than n2−t, the number of
high vertices starts decrease linearly.

• So the maximum complexity of matrix mutliplication for each

layer is O(nt+ω)

24

Time Complexity

G

G[0]

...

G[0...00] G[0...01]

...

G[1]

...
...

G[1...10] G[1...11]
· · ·

#edges #high vertices Complexity

n2 n nω

n2/2 n 2nω

...
...

...

n2−t n nt+ω

n2−t/2 n/2 < nt+ω

...
...

...

• Enumeration takes O(n3−t) time, since each pair of vertices is

responsible for O(n1−t) enumeration.
• When the number of edges is less than n2−t, the number of

high vertices starts decrease linearly.

• So the maximum complexity of matrix mutliplication for each

layer is O(nt+ω)

24

Time Complexity

G

G[0]

...

G[0...00] G[0...01]

...

G[1]

...
...

G[1...10] G[1...11]
· · ·

#edges #high vertices Complexity

n2 n nω

n2/2 n 2nω

...
...

...

n2−t n nt+ω

n2−t/2 n/2 < nt+ω

...
...

...

• Enumeration takes O(n3−t) time, since each pair of vertices is

responsible for O(n1−t) enumeration.
• When the number of edges is less than n2−t, the number of

high vertices starts decrease linearly.
• So the maximum complexity of matrix mutliplication for each

layer is O(nt+ω) 24

Conclusion

Conclusion & Open problems

• APNP algorithm in Õ(n
3+ω
2) time.

• All these problem now have best running algorithm in time

Õ(n
3+ω
2).

(min,≤)-product All Pair Nondecreasing Path (APNP)

(max,min)-product All Pair Bottleneck Path (APBP)

• Is there faster algoirthm for these problems? Can we show

some lower bounds for these porblems?

25

Conclusion & Open problems

• APNP algorithm in Õ(n
3+ω
2) time.

• All these problem now have best running algorithm in time

Õ(n
3+ω
2).

(min,≤)-product All Pair Nondecreasing Path (APNP)

(max,min)-product All Pair Bottleneck Path (APBP)

• Is there faster algoirthm for these problems? Can we show

some lower bounds for these porblems?

25

Conclusion & Open problems

• APNP algorithm in Õ(n
3+ω
2) time.

• All these problem now have best running algorithm in time

Õ(n
3+ω
2).

(min,≤)-product All Pair Nondecreasing Path (APNP)

(max,min)-product All Pair Bottleneck Path (APBP)

• Is there faster algoirthm for these problems? Can we show

some lower bounds for these porblems?

25

Q & A

Questions?

Thank you!

26

	Background
	Previous Works & Our Result
	Our algorithm for APNP on directed simple graphs
	Conclusion

