
Fast Matrix
Multiplication

Ran Duan1.

Hongxun Wu2.

Renfei Zhou1

1 IIIS, Tsinghua University
2 UC Berkeley

Complexity. 𝑂 𝑛! . 2 ≤ 𝜔 ≤ 3

Fast Matrix Multiplication

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

Naïv
e

Str
as

se
n'6

9

Pan
'78

Bini e
t a

l.'7
9

Sc
hö

nha
ge'8

1

Roman
i'8

1

Coppers
mith

,W
inograd

'81

Str
as

se
n'8

6

Coppers
mith

,W
inograd

'90

Sto
the

rs'
10

W
illi

am
s'1

3

Le
 G

all
'14

Alm
an

, W
illia

m
s'2

0

Th
is

work

Fast Matrix Multiplication

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

Naïv
e

Str
as

se
n'6

9

Pan
'78

Bini e
t a

l.'7
9

Sc
hö

nha
ge'8

1

Roman
i'8

1

Coppers
mith

,W
inograd

'81

Str
as

se
n'8

6

Coppers
mith

,W
inograd

'90

Sto
the

rs'
10

W
illi

am
s'1

3

Le
 G

all
'14

Alm
an

, W
illia

m
s'2

0

Th
is

work

10!"

Complexity. 𝑂 𝑛! . 2 ≤ 𝜔 ≤ 3

Fast Matrix Multiplication

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

Naïv
e

Str
as

se
n'6

9

Pan
'78

Bini e
t a

l.'7
9

Sc
hö

nha
ge'8

1

Roman
i'8

1

Coppers
mith

,W
inograd

'81

Str
as

se
n'8

6

Coppers
mith

,W
inograd

'90

Sto
the

rs'
10

W
illi

am
s'1

3

Le
 G

all
'14

Alm
an

, W
illia

m
s'2

0

Th
is

work

10!"

Group theoretical method

[Cohn, Umans 03]

[Cohn, Kleinberg, Szegedy, Umans 05]

……

Complexity. 𝑂 𝑛! . 2 ≤ 𝜔 ≤ 3

A Messy Storyline

Our work

A Messy Storyline
Hashing
[Coppersmith,Winograd 90]

Our work

A Messy Storyline
Hashing
[Coppersmith,Winograd 90]

Merging
[CW 90] [Ambainis, Filmus, Le Gall 14]

⋯ ⋯

Our work

A Messy Storyline
Hashing
[Coppersmith,Winograd 90]

Merging
[CW 90] [Ambainis, Filmus, Le Gall 14]

⋯ ⋯

2/4/8/16/32-th Power
[CW 90][Stothers 10]
[Williams 13] [Le Gall 14]

Our work

A Messy Storyline
Hashing
[Coppersmith,Winograd 90]

Merging
[CW 90] [Ambainis, Filmus, Le Gall 14]

⋯ ⋯

2/4/8/16/32-th Power
[CW 90][Stothers 10]
[Williams 13] [Le Gall 14]

Refined Laser Method
[Alman, Williams 21]

𝑝 vs 𝑝!

Our work

A Messy Storyline
Hashing
[Coppersmith,Winograd 90]

Merging
[CW 90] [Ambainis, Filmus, Le Gall 14]

⋯ ⋯

2/4/8/16/32-th Power
[CW 90][Stothers 10]
[Williams 13] [Le Gall 14]

Refined Laser Method
[Alman, Williams 21]

𝑝 vs 𝑝!

Our work

Half full or Half empty?

Good News:
This is the chance
for you to clean it
up!

Half full or Half empty?

Maybe there is no
simple & fast & elegant
algo

Half full or Half empty?

Maybe there is no
simple & fast & elegant
algo

“Matrix Multiplication Inches Closer to Mythic Goal”, Quanta Magazine

Our Plan

1. Tensor Formulation

2. CW Algorithm From scratch

3. Main idea of our improvement

Tensor Formulation
Entry-wise Product

𝑐! ← 𝑎! ⋅ 𝑏!
For i = 1 ... n

Tensor Formulation
Entry-wise Product

𝑐! ← 𝑎! ⋅ 𝑏!
For i = 1 ... n

Multilinear Polynomial

𝑝(𝑥, 𝑦, 𝑧) =0
!"#

$

𝑥!𝑦! 𝑧!

Formal Variables
X = {𝑥#, 𝑥%, … , 𝑥$},
Y = {𝑦#, 𝑦%, … , 𝑦$},
𝑍 = {𝑧#, 𝑧%, … , 𝑧$}.

Polynomial

Tensor Formulation
Entry-wise Product

𝑐! ← 𝑎! ⋅ 𝑏!
For i = 1 ... n

Multilinear Polynomial

𝑝(𝑥, 𝑦, 𝑧) =0
!"#

$

𝑥!𝑦! 𝑧!

Formal Variables
X = {𝑥#, 𝑥%, … , 𝑥$},
Y = {𝑦#, 𝑦%, … , 𝑦$},
𝑍 = {𝑧#, 𝑧%, … , 𝑧$}.

Polynomial

Substitute 𝑥 ← 𝑎, 𝑦 ← 𝑏.
What is the univariate polynomial 𝑝&,((𝑧)?

Task

Multilinear Polynomial

Tensor Formulation
Matrix Multiplication

𝑐!,# ← c!,# + 𝑎!,$ ⋅ 𝑏$,#
0

!,),*∈[$]

𝑥!,)𝑦),* 𝑧!,*

For i = 1 ... n
For j = 1 ... n

For k = 1 ... n

Polynomial

Substitute 𝑥 ← 𝐴, 𝑦 ← B.
What is the univariate polynomial 𝑝&,((𝑧)?

Task

Two more operations
Inner Product

𝑐% ← 𝑐% + 𝑎! ⋅ 𝑏!

“Inner Product”

𝑐! ← 𝑎! ⋅ 𝑏%

&
!

𝑥!𝑦!𝑧" &
!

𝑥!𝑦"𝑧!

[𝑎]!∈[$]⊗ [𝑎]!!∈ $ → [𝑎!,!!]!,!!∈[$]

Tensor Product

[𝑏]!∈[$]⊗ [𝑏]!!∈ $ → [𝑏!,!!]!,!!∈[$]

[𝑐]!∈[$]⊗ [𝑐]!!∈ $ → [𝑐!,!!]!,!!∈[$]

⊗

Tensor Product
Example

For i = 1 ... n
𝑐! ← 𝑎! ⋅ 𝑏%

⊗For j = 1 ... n
𝑐% ← 𝑎$ ⋅ 𝑏$

For k = 1 ... n
𝑐# ← 𝑎% ⋅ 𝑏#

⊗

Tensor Product
Example

For i = 1 ... n
𝑐! ← 𝑎! ⋅ 𝑏%

⊗For j = 1 ... n
𝑐% ← 𝑎$ ⋅ 𝑏$

For k = 1 ... n
𝑐# ← 𝑎% ⋅ 𝑏#

For i = 1 ... n
For j = 1 ... n

For k = 1 ... n

𝑐!,%,# += 𝑎!,$,% ⋅ 𝑏%,$,#

⊗

Tensor Product
Example

For i = 1 ... n
𝑐! ← 𝑎! ⋅ 𝑏%

⊗For j = 1 ... n
𝑐% ← 𝑎$ ⋅ 𝑏$

For k = 1 ... n
𝑐# ← 𝑎% ⋅ 𝑏#

For i = 1 ... n
For j = 1 ... n

For k = 1 ... n

𝑐!,# += 𝑎!,$ ⋅ 𝑏$,#

Tensor Product
For i = 1 ... n

For j = 1 ... n
For k = 1 ... n

𝑎!,$,% ⋅ 𝑏%,$,# → 𝑐!,%,#

⊗

𝑖 𝑖

𝑗
𝑗

𝑘

𝑘
𝑖

𝑗
𝑗

𝑘

𝑖
𝑘

Tensor Product
For i = 1 ... n

For j = 1 ... n
For k = 1 ... n

𝑎!,$,% ⋅ 𝑏%,$,# → 𝑐!,%,#

⊗

𝑖 𝑖

𝑗
𝑗

𝑘

𝑘
𝑖

𝑗
𝑗

𝑘

𝑖
𝑘

Tensor Product
For i = 1 ... n

For j = 1 ... n
For k = 1 ... n

𝑎!,$,% ⋅ 𝑏%,$,# → 𝑐!,%,#

⊗

𝑖 𝑖

𝑗
𝑗

𝑘

𝑘
𝑖

𝑗
𝑗

𝑘

𝑖
𝑘

Tensor Product
For i = 1 ... n

For j = 1 ... n
For k = 1 ... n

𝑎!,$,% ⋅ 𝑏%,$,# → 𝑐!,%,#

⊗

𝑖 𝑖

𝑗
𝑗

𝑘

𝑘
𝑖

𝑗
𝑗

𝑘

𝑖
𝑘

Matrix Multiplication = 3 Inner Products

⊗

𝑖 𝑖

𝑗

𝑗

𝑘

𝑘

𝑖

𝑗

𝑗

𝑘

𝑖

𝑘

Our Plan

1. Tensor Formulation

2. CW algorithm from scratch

3. Main idea of our improvement

Intuition

=

7

Intuition

=

8

Intuition

=

8

Intuition

=

8

Intuition

=

8

Intuition

=

8

Intuition

=

8

Intuition

=

8

Intuition

=

8

Intuition

=

8

Intuition
Independent small matrix
multiplications gives you large
matrix multiplication

What if I have "economy of
scale?”

Intuition

Intuition

Intuition

Intuition
Let 𝑝 =

𝑞 =

𝑟 =
Then m = 𝑝 𝑞 𝑟 =

Intuition
Known: 𝑝𝑞𝑟 = 𝑚
Task: Get 100 copies of 𝑚

Intuition
Known: 𝑝𝑞𝑟 = 𝑚
Task: Get 100 copies of 𝑚

𝑝 + 𝑞 + 𝑟 " = 6𝑚 +⋯

𝑝 + 𝑞 + 𝑟 "# =
3𝑛

𝑛, 𝑛, 𝑛
𝑚# +⋯

Intuition
Known: 𝑝𝑞𝑟 = 𝑚
Task: Get 100 copies of 𝑚

𝑝 + 𝑞 + 𝑟 " = 6𝑚 +⋯

𝑝 + 𝑞 + 𝑟 "# =
3𝑛

𝑛, 𝑛, 𝑛
𝑚# +⋯

Intuition
(+ +

)⊗"#

= "#
#,#,#

+⋯

(Small) Coppersmith Winograd Tensor

𝑇$% =0
&'(

)

𝑥&𝑦&𝑧* + 𝑥&𝑦*𝑧& + 𝑥*𝑦&𝑧&

𝑥

𝑦

𝑧

(Small) Coppersmith Winograd Tensor

𝑇$% =0
&'(

)

𝑥&𝑦&𝑧* + 𝑥&𝑦*𝑧& + 𝑥*𝑦&𝑧&

𝑥

𝑦

𝑧

(Small) Coppersmith Winograd Tensor

𝑇$% =0
&'(

)

𝑥&𝑦&𝑧* + 𝑥&𝑦*𝑧& + 𝑥*𝑦&𝑧&

𝑥

𝑦

𝑧

(Small) Coppersmith Winograd Tensor

𝑇$% =0
&'(

)

𝑥&𝑦&𝑧* + 𝑥&𝑦*𝑧& + 𝑥*𝑦&𝑧&

𝑥

𝑦

𝑧

(Small) Coppersmith Winograd Tensor

𝑇$% =0
&'(

)

𝑥&𝑦&𝑧* + 𝑥&𝑦*𝑧& + 𝑥*𝑦&𝑧&

𝑇$%
⊗"# needs 𝑞 + 2 "#,-(#)

multiplications instead 3𝑞 "#,-(#)

Partition of the variables

𝑋* = {𝑥*}, 𝑋(= 𝑥(, 𝑥0, … , 𝑥)

𝑥

𝑦

𝑧

0 1

Partition of the variables

𝑥

𝑦

𝑧

0 1

1 + 1 + 0

𝑇((* =0
&'(

)

𝑥&𝑦&𝑧*

𝑋* = {𝑥*}, 𝑋(= 𝑥(, 𝑥0, … , 𝑥)

Partition of the variables

𝑥

𝑦

𝑧

0 1

0 + 1 + 1

𝑇*((=0
&'(

)

𝑥*𝑦&𝑧&

𝑋* = {𝑥*}, 𝑋(= 𝑥(, 𝑥0, … , 𝑥)

Partition of the variables

𝑥

𝑦

𝑧

0 1

1 + 0 + 1

𝑇(*(=0
&'(

)

𝑥&𝑦*𝑧&

𝑋* = {𝑥*}, 𝑋(= 𝑥(, 𝑥0, … , 𝑥)

Partition of the variables

𝑋* = {𝑥*}, 𝑋(= 𝑥(, 𝑥0, … , 𝑥)

There is an (hyper)edge between 𝑋& , 𝑌1 , 𝑍2 only if 𝑖 + 𝑗 + 𝑘 = 2

𝑇((*, 𝑇(*(, 𝑇*((

Taking 𝑛-th power

𝑇$%
⊗# = 𝑇((* + 𝑇(*(+ 𝑇*((⊗

𝑇((* + 𝑇(*(+ 𝑇*((⊗
𝑇((* + 𝑇(*(+ 𝑇*((⋯⋯

𝑥
𝑦

𝑧

0 1 0 10 1

⋯⋯⊗ ⊗

𝑇$%
⊗# = 𝑇((* + 𝑇(*(+ 𝑇*((⊗

𝑇((* + 𝑇(*(+ 𝑇*((⊗
𝑇((* + 𝑇(*(+ 𝑇*((⋯⋯

Taking 𝑛-th power

𝑥
𝑦

𝑧

0 1 0 10 1

⊗ ⊗

𝑇$%
⊗# = 𝑇((* + 𝑇(*(+ 𝑇*((⊗

𝑇((* + 𝑇(*(+ 𝑇*((⊗
𝑇((* + 𝑇(*(+ 𝑇*((⋯⋯

Taking 𝑛-th power

𝑥
𝑦

𝑧

0 1 0 10 1
𝑋(×𝑋(×𝑋*

⊗ ⊗

𝑇$%
⊗# = 𝑇((* + 𝑇(*(+ 𝑇*((⊗

𝑇((* + 𝑇(*(+ 𝑇*((⊗
𝑇((* + 𝑇(*(+ 𝑇*((⋯⋯

Taking 𝑛-th power

𝑥
𝑦

𝑧

0 1 0 10 1

⊗ ⊗
𝑋((*

𝑇$%
⊗# = 𝑇((* + 𝑇(*(+ 𝑇*((⊗

𝑇((* + 𝑇(*(+ 𝑇*((⊗
𝑇((* + 𝑇(*(+ 𝑇*((⋯⋯

Taking 𝑛-th power

𝑥
𝑦

𝑧

0 1 0 10 1

⊗ ⊗
𝑋((*
𝑌(*(
𝑍*((

𝑇$%
⊗# = 𝑇((* + 𝑇(*(+ 𝑇*((⊗

𝑇((* + 𝑇(*(+ 𝑇*((⊗
𝑇((* + 𝑇(*(+ 𝑇*((⋯⋯

Taking 𝑛-th power

𝑥
𝑦

𝑧

0 1 0 10 1

⊗ ⊗
𝑋(*(
𝑌((*
𝑍*((

Conflict

𝑋((*

𝑌(*(

𝑍*((

𝑋(*(

𝑌((*

𝐶'((= 𝐴((' ⋅ 𝐵('(+ 𝐴('(⋅ 𝐵(('
Garbage output

In general

𝑋&!,&",,…,&#

𝑌1!,1",,…,1#

𝑍2!,2",,…,2#

In general

𝑋&!,&",,…,&#

𝑌1!,1",,…,1#

𝑍2!,2",,…,2#

There is an (hyper)edge only if 𝑖 + 𝑗 + 𝑘 = 22222222⋯

In general

𝑋&!,&",,…,&#

𝑌1!,1",,…,1#

𝑍2!,2",,…,2#

There is an (hyper)edge only if 𝑖 + 𝑗 + 𝑘 = 22222222⋯

Zero Out

𝑋&!,&",,…,&#

𝑌1!,1",,…,1#

𝑍2!,2",,…,2#

There is an (hyper)edge only if 𝑖 + 𝑗 + 𝑘 = 22222222⋯

Zero Out

𝑋&!,&",,…,&#

𝑌1!,1",,…,1#

𝑍2!,2",,…,2#

There is an (hyper)edge only if 𝑖 + 𝑗 + 𝑘 = 22222222⋯

Strassen's Laser Method
Main idea: Take a cheap tensor 𝑇. Show that it is useful for MM.

Cheap. There is a non-trivial algorithm
for 𝑇.

Useful. By zeroing-out variables of 𝑇,
turn it into a disjoint union of
MM tensors.

Main idea: Take a cheap tensor 𝑇. Show that it is useful for MM.

Cheap. There is a non-trivial algorithm
for 𝐓.

Useful. By zeroing-out variables of 𝑇,
turn it into a disjoint union of
MM tensors.

Strassen's Laser Method

Main idea: Take a cheap tensor 𝑇. Show that it is useful for MM.

Cheap. There is a non-trivial algorithm
for 𝑇.

Useful. By zeroing-out variables of 𝐓,
turn it into a disjoint union of
MM tensors.

Strassen's Laser Method

Hashing
[Coppersmith,Winograd 90]

𝑋&!,&",,…,&#

𝑌1!,1",,…,1#

𝑍2!,2",,…,2#

There is an (hyper)edge only if h5 𝑖 + ℎ6 𝑘 = 2ℎ7(𝑗)

ℎ8 𝑖 ∈ [0, 𝑝)

ℎ7 𝑗 ∈ [0, 𝑝)

ℎ6 𝑘 ∈ [0, 𝑝)

Hashing
[Coppersmith,Winograd 90]

𝑋&!,&",,…,&#

𝑌1!,1",,…,1#

𝑍2!,2",,…,2#

ℎ8 𝑖 ∈ [0, 𝑝)

ℎ7 𝑗 ∈ [0, 𝑝)

ℎ6 𝑘 ∈ [0, 𝑝)

ℎ8 𝑖 = 𝑤, 𝑖 𝑚𝑜𝑑 𝑝
ℎ6 𝑘 = 𝑤, 𝑘 + 𝑏 𝑚𝑜𝑑 𝑝
ℎ7 𝑗 = (𝑤, 222⋯− 𝑗 + 𝑏)/2 𝑚𝑜𝑑 𝑝

There is an (hyper)edge only if h5 𝑖 + ℎ6 𝑘 = 2ℎ7(𝑗)

Hashing
[Coppersmith,Winograd 90]

⋯⋯

• Throw nodes into 𝑝 buckets.

Hashing
[Coppersmith,Winograd 90]

⋯⋯

• Throw nodes into 𝑝 buckets.
• Pick 𝑝 so that each node has

degree 1 within its bucket.

Hashing
[Coppersmith,Winograd 90]

⋯⋯

• Triples we want
• Interfering cross terms

Hashing
[Coppersmith,Winograd 90]

⋯⋯

• Triples we want
• Interfering cross terms

There is an (hyper)edge only if h5 𝑖 + ℎ6 𝑘 = 2ℎ7(𝑗)

Hashing
[Coppersmith,Winograd 90]

⋯⋯

• Take a Salem-Spencer set of size
𝑝(!-((). Zero-out the rest.

Salem-Spencer Set: A subset of [𝑝 − 1] that
has no arithmetic progressions.

Merging
[CW 90] [Ambainis, Filmus, Le Gall 14]

⋯ ⋯

• Sometimes conflicting matrix
multiplications could be all
kept.

⋯ ⋯

Merging
[CW 90] [Ambainis, Filmus, Le Gall 14]

⋯ ⋯

Hashing
[Coppersmith,Winograd 90]

• Randomness destroy structure.

𝑋&!,&",,…,&#

𝑌1!,1",,…,1#

𝑍2!,2",,…,2#

∈

L𝑋&!,&",&$,&%,…,&#&!,&#

L𝑌1!,1",1$,1%,…,1#&!,1#

L𝑍2!,2",2$,2%,…,2#&!,2#

2/4/8/16/32-th Power
[CW 90][Stothers 10]
[Williams 13] [Le Gall 14]

𝑋&!,&",,…,&#

𝑌1!,1",,…,1#

𝑍2!,2",,…,2#

∈

L𝑋&!,&",&$,&%,…,&#&!,&#

L𝑌1!,1",1$,1%,…,1#&!,1#

L𝑍2!,2",2$,2%,…,2#&!,2#

There is an (hyper)edge iff L𝑖 + M𝑗 + M𝑘 = 44444444⋯

2/4/8/16/32-th Power
[CW 90][Stothers 10]
[Williams 13] [Le Gall 14]

𝑋&!,&",,…,&#

𝑌1!,1",,…,1#

𝑍2!,2",,…,2#

∈

L𝑋&!,&",&$,&%,…,&#&!,&#

L𝑌1!,1",1$,1%,…,1#&!,1#

L𝑍2!,2",2$,2%,…,2#&!,2#

There is an (hyper)edge iff L𝑖 + M𝑗 + M𝑘 = 44444444⋯

2/4/8/16/32-th Power
[CW 90][Stothers 10]
[Williams 13] [Le Gall 14]

• Apply Hashing and zeroing out.

Hashing
[Coppersmith,Winograd 90]

2/4/8/16/32-th Power
[CW 90][Stothers 10]
[Williams 13] [Le Gall 14]

• Apply Hashing and zeroing out.

Hashing
[Coppersmith,Winograd 90]

2/4/8/16/32-th Power
[CW 90][Stothers 10]
[Williams 13] [Le Gall 14]

• Apply Hashing and zeroing out.

• Within each triple the structure is
preserved.

2/4/8/16/32-th Power
[CW 90][Stothers 10]
[Williams 13] [Le Gall 14]

• Apply Hashing and zeroing out.

• Within each triple the structure is
preserved.
• Apply merging.

Merging
[CW 90] [Ambainis, Filmus, Le Gall 14]

⋯ ⋯

2/4/8/16/32-th Power
[CW 90][Stothers 10]
[Williams 13] [Le Gall 14]

Correlated Zero-out

Refined Laser Method
[Alman, Williams 21]

𝑝 vs 𝑝!

• In higher order, sometimes,
arithmetic-progression based
zeroing-out fails.

Correlated Zero-out

Refined Laser Method
[Alman, Williams 21]

𝑝 vs 𝑝!

• If independently zero out each
vertex w.p. 1 − 𝑝.
• Each triple is kept w.p. 𝑝*.

Correlated Zero-out

Refined Laser Method
[Alman, Williams 21]

𝑝 vs 𝑝!

• If independently zero out each
vertex w.p. 1 − 𝑝.
• Each triple is kept w.p. 𝑝*.

Correlated Zero-out

Refined Laser Method
[Alman, Williams 21]

𝑝 vs 𝑝!

𝑝 vs 𝑝"

• If we use same randomness for
every desired triple.
• Each desired triple is kept w.p. 𝑝.
• Each cross term is kept w.p. 𝑝*

Correlated Zero-out

Refined Laser Method
[Alman, Williams 21]

𝑝 vs 𝑝!

𝑝 vs 𝑝"

• If we use same randomness for
every desired triple.
• Each desired triple is kept w.p. 𝑝.
• Each cross term is kept w.p. 𝑝*

Our Plan

1. Tensor Formulation

2. CW Algorithm From scratch

3. Main idea of our improvement

Combination Loss

Our work

• Structure depends on the matching.

L𝑍000⋯

L𝑌((*⋯L𝑋((0⋯

Combination Loss

Our work

• Structure depends on the matching.

L𝑍000⋯
L𝑌*0(⋯L𝑋0*(⋯

Combination Loss

Our work

L𝑍000⋯

L𝑌((*⋯L𝑋((0⋯

L𝑌*0(⋯L𝑋0*(⋯

• Structure depends on the matching.
• Idea: Match each Z multiple times

Fixing holes

Our work

• Still there could be a small number
of conflicts.

L𝑍000⋯

L𝑌((*⋯L𝑋((0⋯

L𝑌*0(⋯L𝑋0*(⋯

Fixing holes

Our work

• Still there could be a small number
of conflicts. (fix: zero-out)

L𝑍000⋯

L𝑌((*⋯L𝑋((0⋯

L𝑌*0(⋯L𝑋0*(⋯

Fixing holes

Fixing holes : Shuffle

[Karppa, Kaski 19] Random shuffling

Fixing holes : Glue together

Fixing holes : Glue together

Take-away
Hashing
[Coppersmith,Winograd 90]

Merging
[CW 90] [Ambainis, Filmus, Le Gall 14]

⋯ ⋯

2/4/8/16/32-th Power
[CW 90][Stothers 10]
[Williams 13] [Le Gall 14]

Refined Laser Method
[Alman, Williams 21]

𝑝 vs 𝑝!

Our work

Future Directions
Hashing
[Coppersmith,Winograd 90]

Merging
[CW 90] [Ambainis, Filmus, Le Gall 14]

⋯ ⋯

• Can we resolve such conflict in some other way?
(Merging cannot prove 𝜔 < 2.3078 [Ambanis, Filmus, Le Gall 14])

• A better tensor than 𝑇:;?
(𝑇01 Cannot prove 𝜔 < 2.16805

[Alman 19][Christandl, Vrana, Zuiddam 19])

Thanks!

