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Group theoretical method 

[Cohn, Umans 03] 

[Cohn, Kleinberg, Szegedy, Umans 05]

……

Complexity.    𝑂 𝑛! . 2 ≤ 𝜔 ≤ 3



A Messy Storyline

Our work



A Messy Storyline
Hashing 
[Coppersmith,Winograd 90]

Our work



A Messy Storyline
Hashing 
[Coppersmith,Winograd 90]

Merging 
[CW 90] [Ambainis, Filmus, Le Gall 14]

⋯ ⋯

Our work



A Messy Storyline
Hashing 
[Coppersmith,Winograd 90]

Merging 
[CW 90] [Ambainis, Filmus, Le Gall 14]

⋯ ⋯

2/4/8/16/32-th Power
[CW 90][Stothers 10]
[Williams 13] [Le Gall 14]

Our work



A Messy Storyline
Hashing 
[Coppersmith,Winograd 90]

Merging 
[CW 90] [Ambainis, Filmus, Le Gall 14]

⋯ ⋯

2/4/8/16/32-th Power
[CW 90][Stothers 10]
[Williams 13] [Le Gall 14]

Refined Laser Method
[Alman, Williams 21]

𝑝 vs  𝑝!

Our work



A Messy Storyline
Hashing 
[Coppersmith,Winograd 90]

Merging 
[CW 90] [Ambainis, Filmus, Le Gall 14]

⋯ ⋯

2/4/8/16/32-th Power
[CW 90][Stothers 10]
[Williams 13] [Le Gall 14]

Refined Laser Method
[Alman, Williams 21]

𝑝 vs  𝑝!

Our work



Half full or Half empty?

Good News: 
This is the chance 
for you to clean it 
up!
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Half full or Half empty?

Maybe there is no 
simple & fast & elegant 
algo

“Matrix Multiplication Inches Closer to Mythic Goal”, Quanta Magazine



Our Plan

1. Tensor Formulation

2. CW Algorithm From scratch

3. Main idea of our improvement
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Multilinear Polynomial

Tensor Formulation
Matrix Multiplication

𝑐!,# ← c!,# + 𝑎!,$ ⋅ 𝑏$,#
0

!,),*∈[$]

𝑥!,)𝑦),* 𝑧!,*

For i = 1 ... n
For j = 1 ... n

For k = 1 ... n

Polynomial 

Substitute 𝑥 ← 𝐴, 𝑦 ← B.
What is the univariate polynomial 𝑝&,((𝑧)? 

Task 



Two more operations
Inner Product

𝑐% ← 𝑐% + 𝑎! ⋅ 𝑏!

“Inner Product”

𝑐! ← 𝑎! ⋅ 𝑏%

&
!

𝑥!𝑦!𝑧" &
!

𝑥!𝑦"𝑧!



[𝑎]!∈[$]⊗ [𝑎]!!∈ $ → [𝑎!,!!]!,!!∈[$]

Tensor Product

[𝑏]!∈[$]⊗ [𝑏]!!∈ $ → [𝑏!,!!]!,!!∈[$]

[𝑐]!∈[$]⊗ [𝑐]!!∈ $ → [𝑐!,!!]!,!!∈[$]
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Matrix Multiplication = 3 Inner Products
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Intuition
Independent small matrix 
multiplications gives you large 
matrix multiplication 

What if I have "economy of 
scale?”
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Intuition
Let 𝑝 =

𝑞 =

𝑟 =
Then m = 𝑝 𝑞 𝑟 =
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Intuition
( + +

)⊗"#

= "#
#,#,#

+⋯
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(Small) Coppersmith Winograd Tensor

𝑇$% =0
&'(

)

𝑥&𝑦&𝑧* + 𝑥&𝑦*𝑧& + 𝑥*𝑦&𝑧&

𝑇$%
⊗"# needs 𝑞 + 2 "#,-(#)

multiplications instead 3𝑞 "#,-(#)
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Partition of the variables

𝑋* = {𝑥*}, 𝑋( = 𝑥(, 𝑥0, … , 𝑥)

There is an (hyper)edge between 𝑋& , 𝑌1 , 𝑍2 only if 𝑖 + 𝑗 + 𝑘 = 2
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Conflict

𝑋((*

𝑌(*(

𝑍*((

𝑋(*(

𝑌((*

𝐶'(( = 𝐴((' ⋅ 𝐵('( + 𝐴('( ⋅ 𝐵(('
Garbage output
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Strassen's Laser Method
Main idea: Take a cheap tensor 𝑇. Show that it is useful for MM.

Cheap. There is a non-trivial algorithm 
for  𝑇.

Useful. By zeroing-out variables of 𝑇,
turn it into a disjoint union of 
MM tensors.
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MM tensors.

Strassen's Laser Method



Hashing 
[Coppersmith,Winograd 90]

𝑋&!,&",,…,&#

𝑌1!,1",,…,1#

𝑍2!,2",,…,2#

There is an (hyper)edge only if   h5 𝑖 + ℎ6 𝑘 = 2ℎ7(𝑗)

ℎ8 𝑖 ∈ [0, 𝑝)

ℎ7 𝑗 ∈ [0, 𝑝)

ℎ6 𝑘 ∈ [0, 𝑝)



Hashing 
[Coppersmith,Winograd 90]

𝑋&!,&",,…,&#

𝑌1!,1",,…,1#

𝑍2!,2",,…,2#

ℎ8 𝑖 ∈ [0, 𝑝)

ℎ7 𝑗 ∈ [0, 𝑝)

ℎ6 𝑘 ∈ [0, 𝑝)

ℎ8 𝑖 = 𝑤, 𝑖 𝑚𝑜𝑑 𝑝
ℎ6 𝑘 = 𝑤, 𝑘 + 𝑏 𝑚𝑜𝑑 𝑝
ℎ7 𝑗 = ( 𝑤, 222⋯− 𝑗 + 𝑏)/2 𝑚𝑜𝑑 𝑝

There is an (hyper)edge only if   h5 𝑖 + ℎ6 𝑘 = 2ℎ7(𝑗)
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⋯⋯

• Throw nodes into 𝑝 buckets.
• Pick 𝑝 so that each node has 

degree 1 within its bucket.
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• Triples we want
• Interfering cross terms



Hashing 
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⋯⋯

• Triples we want
• Interfering cross terms

There is an (hyper)edge  only if   h5 𝑖 + ℎ6 𝑘 = 2ℎ7(𝑗)



Hashing 
[Coppersmith,Winograd 90]

⋯⋯

• Take a Salem-Spencer set of size 
𝑝(!-((). Zero-out the rest.

Salem-Spencer Set: A subset of [𝑝 − 1] that 
has no arithmetic progressions.



Merging 
[CW 90] [Ambainis, Filmus, Le Gall 14]

⋯ ⋯

• Sometimes conflicting matrix 
multiplications could be all 
kept.

⋯ ⋯



Merging 
[CW 90] [Ambainis, Filmus, Le Gall 14]

⋯ ⋯

Hashing 
[Coppersmith,Winograd 90]

• Randomness destroy structure.
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• Apply Hashing and zeroing out.
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preserved.
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• Apply Hashing and zeroing out.

• Within each triple the structure is 
preserved.
• Apply merging.

Merging 
[CW 90] [Ambainis, Filmus, Le Gall 14]

⋯ ⋯

2/4/8/16/32-th Power
[CW 90][Stothers 10]
[Williams 13] [Le Gall 14]



Correlated Zero-out

Refined Laser Method
[Alman, Williams 21]

𝑝 vs  𝑝!

• In higher order, sometimes, 
arithmetic-progression based 
zeroing-out fails.
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Correlated Zero-out

Refined Laser Method
[Alman, Williams 21]

𝑝 vs  𝑝!

𝑝 vs  𝑝"

• If we use same randomness for 
every desired triple. 
• Each desired triple is kept w.p. 𝑝.
• Each cross term is kept w.p. 𝑝*



Our Plan

1. Tensor Formulation

2. CW Algorithm From scratch

3. Main idea of our improvement
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Combination Loss

Our work

L𝑍000⋯

L𝑌((*⋯L𝑋((0⋯

L𝑌*0(⋯L𝑋0*(⋯

• Structure depends on the matching.
• Idea:  Match each Z multiple times



Fixing holes

Our work

• Still there could be a small number 
of conflicts.
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Fixing holes

Our work

• Still there could be a small number 
of conflicts.   (fix: zero-out)

L𝑍000⋯

L𝑌((*⋯L𝑋((0⋯

L𝑌*0(⋯L𝑋0*(⋯



Fixing holes



Fixing holes : Shuffle

[Karppa, Kaski 19]  Random shuffling
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Fixing holes : Glue together



Take-away
Hashing 
[Coppersmith,Winograd 90]

Merging 
[CW 90] [Ambainis, Filmus, Le Gall 14]

⋯ ⋯

2/4/8/16/32-th Power
[CW 90][Stothers 10]
[Williams 13] [Le Gall 14]

Refined Laser Method
[Alman, Williams 21]

𝑝 vs  𝑝!

Our work



Future Directions
Hashing 
[Coppersmith,Winograd 90]

Merging 
[CW 90] [Ambainis, Filmus, Le Gall 14]

⋯ ⋯

• Can we resolve such conflict in some other way? 
(Merging cannot prove 𝜔 < 2.3078 [Ambanis, Filmus, Le Gall 14] )

• A better tensor than 𝑇:;?
(𝑇01 Cannot prove 𝜔 < 2.16805

[Alman 19][Christandl, Vrana, Zuiddam 19] )



Thanks!


