Good Contention Resolution Schemes Cannot Be Oblivious for Matroids

$\mathrm{Hu} \mathrm{Fu}{ }^{1}$ Pinyan Lu ${ }^{2}$ Zhihao Gavin Tang ${ }^{2}$
Abner Turkieltaub ${ }^{1}$ Hongxun Wu ${ }^{3}$ Jinzhao Wu ${ }^{4}$ Qianfan Zhang ${ }^{3}$
${ }^{1}$ University of British Columbia
${ }^{2}$ ITCS, Shanghai University of Finance and Economics
${ }^{3}$ IIIS, Tsinghua University
${ }^{4}$ Peking University

Background

Secretary Problem

v_{0}

v_{1}

v_{2}

v_{3}

- Each candidate has a value v_{i}.
- They come in a random order.
- You must irrevocably decide which candidate to hire.
- Maximize $\mathbb{E}\left[v_{\text {hire }}\right] /$ the probability to hire the best one.
- $\mathbb{E}\left[v_{\text {hire }}\right] \geq \frac{1}{e} \mathbb{E}\left[v_{\text {best }}\right] / \frac{1}{e}$

Secretary Problem

恋爱不能靠瞎猜，要有科学的的 37 法则

2019年2月18日 记住这 \mathbf{k} 个麦穗中的最大的麦穗，然后再继续前进，如果后面的麦穗有比这个还大的，那么摘取这个麦穗，这时这个麦穗是 n 个麦穗中的最大的概率为 $1 / e$ ，约为 37% ，简称 $37 \ldots$
ก超哥抡科学（
－Simple $\frac{1}{e}$－rule．
－It has a wide culture influence．

Prophet Inequailty

$$
v_{0} \sim D_{0}
$$

$v_{1} \sim D_{1} v_{2} \sim D_{2} v_{3} \sim D_{3}$

- Each candidate has a independent value $v_{i} \sim D_{i}$.
- They come in a fixed order.
- You must irrevocably decide which candidate to hire.
- Maximize $\mathbb{E}\left[v_{\text {hire }}\right]$.
- $\mathbb{E}\left[v_{\text {hire }}\right] \geq \frac{1}{2} \mathbb{E}\left[v_{\text {best }}\right]$.

Prophet Inequailty

- A simple strategy: Take the threshold T to be median of $D_{\text {max }}$.
- For each candidate i, it has at least $\frac{1}{2}$ probability to be looked at.
- Then it is taken if it is larger than T.
- $\frac{1}{2} T+\frac{1}{2} \sum_{i=1}^{n} \mathbb{E}\left[\left(v_{i}-T\right)^{+}\right] \geq \frac{1}{2} \mathbb{E}\left[\left(v^{*}-T\right)^{+}\right]+\frac{1}{2} T=\frac{1}{2} \mathbb{E}\left[v^{*}\right]$

(Online) Contention Resolution Schemes

x_{0}

x_{1}

x_{3}
ρ

x_{4}

- Each candidate is active independently (e.g. leaves you a good impression) w.p. x_{i}.
- $\sum_{i} x_{i} \leq 1$
- They come in a fixed order.
- You must irrevocably decide which candidate to hire.
- Maximize "selectability" $\min _{i} \operatorname{Pr}[i$ is hired $\mid i$ is active $]$.

A simple $\frac{1}{4}$-selectable OCRS

x_{0}

x_{1}
x_{3}
x_{4}

- Flip a coin for each candidate ($\frac{1}{2}$ head $\frac{1}{2}$ tail).
- Hire an active candidate only when its coin is head.
- Probability candidate i is looked at is at least $\frac{x_{1}+\ldots x_{i-1}}{2} \leq \frac{1}{2}$. Then it is hired when active w.p. $\frac{1}{2}$ conditioning on it is looked at.
- $\operatorname{Pr}[i$ is hired i is active $] \geq \frac{1}{4}$.

OCRS \rightarrow Prophet inequality

- Idea: Resample v_{i}^{\prime} from each D_{i}.
- Let i be active if v_{i} is the maximum in $\left(v_{i}, v_{-i}^{\prime}\right)$.
- Use different samples for each i.
- Run online contention resolution schemes. ${ }^{1}$
- $O(n)$ samples are needed.
${ }^{1}$ There is a reduction in the reversed direction. Basically write OCRS as an
LP and use prophet inequality as its seperation oracle.

Other applications of OCRS

- Rounding fractional solutions in discrete optimization.
- View each variable as the proability that corresponding candidate is active.
- Turn ex-ante feasibility into ex-post feasibility.

Matroid

- A matroid is $\mathcal{M}=(U, \mathcal{I})$ where $\mathcal{I} \subseteq 2^{U}$ is the set of independent sets.
- Example: Trees in graph
- Its polytope $\mathcal{P}_{\mathcal{M}}=\left\{x \in[0,1]^{n} \mid \sum_{i \in S} x_{i} \leq \operatorname{rank}(S), \forall S \subseteq U\right\}$.
- Example: For all subset S of edges, if they have n distinct vertices, $x(S) \leq n-1$.

Matroid

- The problems above generalize to matroids.
- Hire only one candidate \rightarrow Hire an independent set of candidates
- For (Online) CRS : $\sum_{i} x_{i} \leq 1 \rightarrow x \in \mathcal{P}_{\mathcal{M}}$
- Current status:
- 2-competitive matroid prophet inequality exists.
- 2-selectable matroid OCRS exists.
- Constant-competitive matroid secretary is open for more than 20 years!

Sample Complexity

- In reality, knowing the full distribution information is hard.
- Instead, we take sample from each D_{i}.
- A sample here is defined as n draws from all n distibutions $D_{1}, D_{2}, \ldots, D_{n}$ (or x_{1}, \ldots, x_{n} if it is OCRS).
- There is a single-sample 2-competitive prophet inequality for single item!
- Very simple algorithm : take the maximum of your sample as the threshold
- If the algorithm needs no sample at all, it is called oblivious.
- Note the $\frac{1}{4}$-selectable OCRS is oblivious.
- There is an $\frac{1}{2}$-selectable OCRS which selects each candidate with probability $\frac{1}{2-\sum_{j<i} x_{j}}$.
- Is $\frac{1}{4}$ the best we can do when we have no information?

Optimal single-item oblivious OCRS

- Accept the first one w.p. $\frac{1}{2}$.
- Accept the second one w.p. 1 (if has rejected the first one).
- Has selectability $\operatorname{Pr}[i$ is hired $\mid i$ is active $] \geq \frac{1}{e}$ (by calculation)
- One can prove that any such "counting strategy" cannot do better than $\frac{1}{e}$ on uniform instance (by calculation).

Optimal single-item oblivious OCRS

- Is this the best we can do?
- Intuition: The last one should be selected with probability 1.
- Maybe there is a better strategy which utilize the index of candidates.
- It turns out "counting strategy" is the best we can do!

(Hypergraph) Ramsey theory

- If you color a sufficiently large complete (Hyper)graph with finitely many colors, there must be a monochromatic clique.

Simulate "counting strategy"

- Consider the probability of accept the first active candidate

- Color each candidate according to $\left\lfloor\frac{p}{\epsilon}\right\rfloor$

Simulate "counting strategy"

- What about the second candidate?

- Color the edge according to $\left\lfloor\frac{p}{\epsilon}\right\rfloor$

Simulate "counting strategy"

- More than two person : hypergraph
- Fill in the uniform instance in the monochromatic clique.

Oops! No oblivious OCRS for matroid

(a) The bipartite complete graph $K_{N, M}$. Here $i=4$, edges adjacent to u_{i} has probability $x_{e}^{i}=1$ of being active, while other edges each only has probability $1 / M$ of being active. Here N should be a large enough number such that $N \gg M^{M}$.

(b) A realization $R(\boldsymbol{x})$ of this instance. U^{*} is the set of all vertices on left side of degree M. If N is large enough there will be many vertices happen to be in U^{*}. These vertices in U^{*} are indistinguishable to CRS, and $u_{4}(i=4)$ is hidden between them.

Figure 1: The hard instance for graphic matroids

Oops! No oblivious OCRS for matroid

- However, there is a matroid OCRS with $O(\log n)$ samples.
- It directly follow from the explicit construction of $\frac{1}{4}$-selectable matroid OCRS.

A matroid exchange Lemma

- For maximum weighted basis B and any basis B^{\prime}. There is a bijection $f: B \rightarrow B^{\prime}$ such that $B^{\prime}-f(x)+x$ is a still a basis, and $w(f(x)) \leq w(x)$.

- The direction is important. (The reversed direction is trivial)

Prophet inequality with $O(\log n)$ samples

- Use resample as criterion for activation needs $O(n)$ samples.
- Idea: learn certain quantile as threshold for activation.
- Indepdence issue
- For simplicity, we describe our algorithm on graphs. It is the same on matroids.

Prophet inequality with $O(\log n)$ samples

- First, let the threshold of an edge be the median of its counterpart in optimal basis.

Prophet inequality with $O(\log n)$ samples

- We say an edge is active if it is larger than its threshold.
- Run OCRS with $O(\log n)$ samples.
- Indepdence is guarenteed since learning thresholds is seperated from the rest.

Prophet inequality with $O(\log n)$ samples

- Analysis
- $x_{i}=\operatorname{Pr}\left[v_{i} \geq T_{i}\right] \leq 2 \operatorname{Pr}[i \in \mathrm{OPT}]$. This is in the polytope (maybe after shrinking).
- By selectability of OCRS, we get at least $\frac{1}{4}$ of

$$
\sum_{i} \mathbb{E}\left[v_{i} I\left[v_{i} \geq T_{i}\right]\right]
$$

- What about the rest? It would be a serious problem if

$$
\sum_{i \in \mathrm{OPT}} \mathbb{E}\left[v_{i} I\left[v_{i}<T_{i}\right]\right]
$$

contributes a lot to OPT.

Prophet inequality with $O(\log n)$ samples

- Analysis
- Luckily, it cannot be the case! We prove this by matching with the maximum weighted basis w.r.t. weight T_{i}.

Open Problems

- Matroid secretary
- Is there matroid prophet inequality from constant samples?
- Can we explore constrained order version of OCRS?

Q \& A

Questions?

Thank you!

