Good Contention Resolution Schemes Cannot Be Oblivious for Matroids

Hu Fu 1 Pinyan Lu 2 Zhihao Gavin Tang 2 Abner Turkieltaub 1 Hongxun Wu 3 Jinzhao Wu 4 Qianfan Zhang 3

¹University of British Columbia

²ITCS, Shanghai University of Finance and Economics

³IIIS, Tsinghua University

⁴Peking University

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Background

Prophet Inequality

(Online) Contention Resolution Schemes

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Secretary Problem

- Each candidate has a value v_i.
- They come in a **random** order.
- You must irrevocably decide which candidate to hire.
- Maximize $\mathbb{E}[v_{hire}]$ / the probability to hire the best one.

•
$$\mathbb{E}[v_{\mathsf{hire}}] \geq \frac{1}{e} \mathbb{E}[v_{\mathsf{best}}] / \frac{1}{e}$$

Secretary Problem

恋爱不能靠瞎猜,要有科学的的37法则

2019年2月18日 记住这k个麦穗中的最大的麦穗,然后再继续前进,如果后面的麦穗有比这个还大的,那么摘取这个麦穗,这时这个麦穗是n个麦穗中的最大的概率为1/e,约为37%,简称37...

🖶 超哥抡科学 🔘 百度快照

- Simple $\frac{1}{e}$ -rule.
- It has a wide culture influence.

Prophet Inequailty

- Each candidate has a **independent** value $v_i \sim D_i$.
- They come in a **fixed** order.
- > You must irrevocably decide which candidate to hire.

(日) (四) (日) (日) (日)

- Maximize $\mathbb{E}[v_{hire}]$.
- $\mathbb{E}[v_{\text{hire}}] \geq \frac{1}{2}\mathbb{E}[v_{\text{best}}].$

Prophet Inequailty

- ► A simple strategy : Take the threshold T to be median of D_{max}.
 - For each candidate *i*, it has at least ¹/₂ probability to be looked at.
 - ▶ Then it is taken if it is larger than *T*.
 - $\frac{1}{2}T + \frac{1}{2}\sum_{i=1}^{n}\mathbb{E}[(v_i T)^+] \ge \frac{1}{2}\mathbb{E}[(v^* T)^+] + \frac{1}{2}T = \frac{1}{2}\mathbb{E}[v^*]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

(Online) Contention Resolution Schemes

- Each candidate is active independently (e.g. leaves you a good impression) w.p. x_i.
- $\blacktriangleright \sum_{i} x_i \le 1$
- They come in a **fixed** order.
- You must irrevocably decide which candidate to hire.
- Maximize "selectability" $\min_i \Pr[i \text{ is hired}|i \text{ is active}]$.

A simple $\frac{1}{4}$ -selectable OCRS

- Flip a coin for each candidate $(\frac{1}{2} \text{ head } \frac{1}{2} \text{ tail})$.
- Hire an active candidate only when its coin is head.
- $\Pr[i \text{ is hired}|i \text{ is active}] \geq \frac{1}{4}$.

$\mathsf{OCRS} \to \mathsf{Prophet} \text{ inequality}$

- Idea: Resample v'_i from each D_i .
- Let *i* be active if v_i is the maximum in (v_i, v'_{-i}) .
- Use different samples for each *i*.
- Run online contention resolution schemes. ¹
- O(n) samples are needed.

¹There is a reduction in the reversed direction. Basically write OCRS as an LP and use prophet inequality as its separation oracle $\Box \rightarrow \langle \Box \rangle + \langle \Box$

Other applications of OCRS

- Rounding fractional solutions in discrete optimization.
 - View each variable as the proability that corresponding candidate is active.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Turn ex-ante feasibility into ex-post feasibility.

Matroid

- A matroid is *M* = (*U*, *I*) where *I* ⊆ 2^{*U*} is the set of independent sets.
 - Example: Trees in graph
- ▶ Its polytope $\mathcal{P}_{\mathcal{M}} = \{x \in [0,1]^n | \sum_{i \in S} x_i \leq \operatorname{rank}(S), \forall S \subseteq U\}.$
 - ► Example: For all subset S of edges, if they have n distinct vertices, x(S) ≤ n − 1.

Matroid

- The problems above generalize to matroids.
 - \blacktriangleright Hire only one candidate \rightarrow Hire an independent set of candidates
 - For (Online) CRS : $\sum_i x_i \leq 1 \rightarrow x \in \mathcal{P}_M$
- Current status:
 - ► 2-competitive matroid prophet inequality exists.
 - 2-selectable matroid OCRS exists.
 - ► Constant-competitive matroid secretary is open for more than 20 years!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sample Complexity

- In reality, knowing the full distribution information is hard.
- Instead, we take sample from each D_i .
 - ► A sample here is defined as n draws from all n distibutions D₁, D₂,..., D_n (or x₁,..., x_n if it is OCRS).
- There is a single-sample 2-competitive prophet inequality for single item!
 - Very simple algorithm : take the maximum of your sample as the threshold
- If the algorithm needs no sample at all, it is called oblivious.
 - Note the $\frac{1}{4}$ -selectable OCRS is oblivious.
 - ► There is an $\frac{1}{2}$ -selectable OCRS which selects each candidate with probability $\frac{1}{2-\sum_{i < i} x_i}$.

(日)((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))

• Is $\frac{1}{4}$ the best we can do when we have no information?

Optimal single-item oblivious OCRS

- Accept the first one w.p. $\frac{1}{2}$.
- Accept the second one w.p. 1 (if has rejected the first one).
- Has selectability $\Pr[i \text{ is hired} | i \text{ is active}] \geq \frac{1}{e}$ (by calculation)
- One can prove that any such "counting strategy" cannot do better than ¹/_e on uniform instance (by calculation).

Optimal single-item oblivious OCRS

- Is this the best we can do?
 - ▶ Intuition : The last one should be selected with probability 1.

- Maybe there is a better strategy which utilize the index of candidates.
- It turns out "counting strategy" is the best we can do!

(Hypergraph) Ramsey theory

If you color a sufficiently large complete (Hyper)graph with finitely many colors, there must be a monochromatic clique.

Simulate "counting strategy"

Consider the probability of accept the first active candidate

• Color each candidate according to $\lfloor \frac{p}{\epsilon} \rfloor$

Simulate "counting strategy"

What about the second candidate?

• Color the edge according to $\lfloor \frac{p}{\epsilon} \rfloor$

Simulate "counting strategy"

- More than two person : hypergraph
- Fill in the uniform instance in the monochromatic clique.

Oops! No oblivious OCRS for matroid

(a) The bipartite complete graph $K_{N,M}$. Here i = 4, edges adjacent to u_i has probability $x_e^i = 1$ of being active, while other edges each only has probability 1/M of being active. Here N should be a large enough number such that $N \gg M^M$.

(b) A realization R(x) of this instance. U^* is the set of all vertices on left side of degree M. If N is large enough there will be many vertices happen to be in U^* . These vertices in U^* are indistinguishable to CRS, and u_4 (i = 4) is hidden between them.

◆□ → ◆詞 → ◆回 → ◆回 → □ 回

Oops! No oblivious OCRS for matroid

- However, there is a matroid OCRS with $O(\log n)$ samples.
- It directly follow from the explicit construction of ¹/₄-selectable matroid OCRS.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A matroid exchange Lemma

For maximum weighted basis B and any basis B'. There is a bijection f: B → B' such that B' - f(x) + x is a still a basis, and w(f(x)) ≤ w(x).

The direction is important. (The reversed direction is trivial)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

- Use resample as criterion for activation needs O(n) samples.
- Idea: learn certain quantile as threshold for activation.
- Indepdence issue
- For simplicity, we describe our algorithm on graphs. It is the same on matroids.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 First, let the threshold of an edge be the median of its counterpart in optimal basis.

(日) (四) (日) (日) (日)

• We say an edge is active if it is larger than its threshold.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Run OCRS with $O(\log n)$ samples.
- Indepdence is guarenteed since learning thresholds is seperated from the rest.

Analysis

- x_i = Pr[v_i ≥ T_i] ≤ 2 Pr[i ∈ OPT]. This is in the polytope (maybe after shrinking).
- By selectability of OCRS, we get at least $\frac{1}{4}$ of

$$\sum_{i} \mathbb{E}[v_i I[v_i \ge T_i]]$$

What about the rest? It would be a serious problem if

$$\sum_{i \in \mathsf{OPT}} \mathbb{E}[v_i I[v_i < T_i]]$$

contributes a lot to OPT.

- Analysis
 - ► Luckily, it cannot be the case! We prove this by matching with the maximum weighted basis w.r.t. weight *T_i*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Open Problems

- Matroid secretary
- Is there matroid prophet inequality from constant samples?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Can we explore constrained order version of OCRS?

Q & A

Questions?

Thank you!

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○