
Random Order Vertex Arrival Contention
Resolution Schemes For Matching, With

Applications

Hu Fu1, Zhihao Gavin Tang1, Hongxun Wu2, Jinzhao Wu3,
and Qianfan Zhang2

1ITCS, Shanghai University of Finance and Economics

2IIIS, Tsinghua University

3Peking University

Query Commit

Query-Commit MWBM

Chen, Immorlica, Karlin, Mahdian, and Rudra [CIKMR09] first
considered the matching problem in query-commit model.

1

2

3

4

5

6

7

(10, 0.7)

10

(7, 0.9)

(7, 0.9)

(8, 0.2)

(6, 0.5)

6

(3, 0.9)

(3, 0.9)

(4, 0.6)

4

Utility = 10 + 6 + 4 = 20

Query Commit

Query-Commit MWBM

For each edge e there is a tuple (we, pe). Each edge e
independently exists with probability pe and has weight we.

1

2

3

4

5

6

7

(10, 0.7)

10

(7, 0.9)

(7, 0.9)

(8, 0.2)

(6, 0.5)

6

(3, 0.9)

(3, 0.9)

(4, 0.6)

4

Utility = 10

+ 6 + 4 = 20

Query Commit

Query-Commit MWBM

For each edge e there is a tuple (we, pe). Each edge e
independently exists with probability pe and has weight we.

1

2

3

4

5

6

7

(10, 0.7)

10

(7, 0.9)

(7, 0.9)

(8, 0.2)

(6, 0.5)

6

(3, 0.9)

(3, 0.9)

(4, 0.6)

4

Utility = 10

+ 6 + 4 = 20

Query Commit

Query-Commit MWBM

For each edge e there is a tuple (we, pe). Each edge e
independently exists with probability pe and has weight we.

1

2

3

4

5

6

7

(10, 0.7)

10

(7, 0.9)

(7, 0.9)

(8, 0.2)

(6, 0.5)

6

(3, 0.9)

(3, 0.9)

(4, 0.6)

4

Utility = 10 + 6

+ 4 = 20

Query Commit

Query-Commit MWBM

For each edge e there is a tuple (we, pe). Each edge e
independently exists with probability pe and has weight we.

1

2

3

4

5

6

7

(10, 0.7)

10

(7, 0.9)

(7, 0.9)

(8, 0.2)

(6, 0.5)

6

(3, 0.9)

(3, 0.9)

(4, 0.6)

4

Utility = 10 + 6 + 4 = 20

Price of Information

PoI MWBM
Singla [Singla17] introduced the price-of-information model.

1

2

3

4

5

(U[0,8], 2)

5.55.5

(U[3,5], 4)

(U[3,5], 4)

(U[2,8], 1)

3.73.7

(U[0,7], 3)

6.26.2

Total cost = 2 + 1 + 3 = 6

Max weight = 5.5 + 6.2 = 11.7

Utility = Max weight− Total cost = 5.7

Price of Information

PoI MWBM
For each edge e there is a tuple (De, πe). The weight of edge e
follows from distribution De and we can query it by paying cost πe.

1

2

3

4

5

(U[0,8], 2)

5.5

5.5

(U[3,5], 4)

(U[3,5], 4)

(U[2,8], 1)

3.73.7

(U[0,7], 3)

6.26.2

Total cost = 2

+ 1 + 3 = 6

Max weight = 5.5 + 6.2 = 11.7

Utility = Max weight− Total cost = 5.7

Price of Information

PoI MWBM
For each edge e there is a tuple (De, πe). The weight of edge e
follows from distribution De and we can query it by paying cost πe.

1

2

3

4

5

(U[0,8], 2)

5.5

5.5

(U[3,5], 4)

(U[3,5], 4)

(U[2,8], 1)

3.7

3.7

(U[0,7], 3)

6.26.2

Total cost = 2 + 1

+ 3 = 6

Max weight = 5.5 + 6.2 = 11.7

Utility = Max weight− Total cost = 5.7

Price of Information

PoI MWBM
For each edge e there is a tuple (De, πe). The weight of edge e
follows from distribution De and we can query it by paying cost πe.

1

2

3

4

5

(U[0,8], 2)

5.5

5.5

(U[3,5], 4)

(U[3,5], 4)

(U[2,8], 1)

3.7

3.7

(U[0,7], 3)

6.2

6.2

Total cost = 2 + 1 + 3 = 6

Max weight = 5.5 + 6.2 = 11.7

Utility = Max weight− Total cost = 5.7

Price of Information

PoI MWBM
For each edge e there is a tuple (De, πe). The weight of edge e
follows from distribution De and we can query it by paying cost πe.

1

2

3

4

5

(U[0,8], 2)5.5

5.5

(U[3,5], 4)

(U[3,5], 4)

(U[2,8], 1)3.7

3.7

(U[0,7], 3)

6.26.2

Total cost = 2 + 1 + 3 = 6

Max weight = 5.5 + 6.2 = 11.7

Utility = Max weight− Total cost = 5.7

Price of Information

PoI MWBM
For each edge e there is a tuple (De, πe). The weight of edge e
follows from distribution De and we can query it by paying cost πe.

1

2

3

4

5

(U[0,8], 2)5.5

5.5

(U[3,5], 4)

(U[3,5], 4)

(U[2,8], 1)3.7

3.7

(U[0,7], 3)6.2

6.2

Total cost = 2 + 1 + 3 = 6

Max weight = 5.5 + 6.2 = 11.7

Utility = Max weight− Total cost = 5.7

Stochastic Matching

The paper by Gamlath, Kale, and Svensson proved the following
result.

Theorem ([GKS19])

For bipartite graphs, there is a 1− 1
e ≈ 0.632-approximation

algorithm for maximum weight matching in query-commit (and
price of information) model.

Theorem (Our result)

For general graphs, there is a 8
15 ≈ 0.533-approximation algorithm

for maximum weight matching in query-commit (and price of
information) model.

Stochastic Matching

The paper by Gamlath, Kale, and Svensson proved the following
result.

Theorem ([GKS19])

For bipartite graphs, there is a 1− 1
e ≈ 0.632-approximation

algorithm for maximum weight matching in query-commit (and
price of information) model.

Theorem (Our result)

For general graphs, there is a 8
15 ≈ 0.533-approximation algorithm

for maximum weight matching in query-commit (and price of
information) model.

Result in [GKS19]

LP Relaxation for Bipartite Matching

Rounding this LP

Prophet Secretary (in bipartite graph)

(1− 1/e)-approx QC Algorithm (1− 1/e)-approx PoI Algorithm

Result in [GKS19]

LP Relaxation for Bipartite Matching

Rounding this LP

Prophet Secretary (in bipartite graph)

(1− 1/e)-approx QC Algorithm (1− 1/e)-approx PoI Algorithm

Result in [GKS19]

LP Relaxation for Bipartite Matching

Rounding this LP

Prophet Secretary (in bipartite graph)

(1− 1/e)-approx QC Algorithm (1− 1/e)-approx PoI Algorithm

Result in [GKS19]

LP Relaxation for Bipartite Matching

Rounding this LP

Prophet Secretary (in bipartite graph)

(1− 1/e)-approx QC Algorithm (1− 1/e)-approx PoI Algorithm

Our Observation

LP Relaxation for Bipartite Matching

Rounding this LP

Random Order CRS (RCRS)

(1− 1/e)-approx QC Algorithm (1− 1/e)-approx PoI Algorithm

Our Observation

LP Relaxation for General Matching

Rounding this LP

Random Order Vertex Arrival CRS

8
15 -approx QC Algorithm 8

15 -approx PoI Algorithm

(Random) Contention Resolution Schemes

Given a set [n] of elements:

I i is active independently with probability xi where∑
i∈[n] xi ≤ 1.

I (Elements arrive one by one in a random order.)

I We can select at most one element (which must be active).

A CRS is called α-selectable if Pr[i selected | i active] ≥ α for all i.

Techniques in [GKS19]

1

2

3

4

5

0.5

0.2

0.3

0.6

f(F) = 1−0.5×0.8×0.7

x(1,2)+x(1,3)+x(1,4) ≤ f(F)

LP Relaxation
For bipartite graph G = (A ∪B,E),

max
∑
e∈E

xe · w(e)

s.t.
∑
e∈F

xe ≤ f(F) ∀v ∈ A,F ⊆ δ(v)∑
e∈δ(u)

xe ≤ 1 ∀u ∈ B

xe ≥ 0 ∀e ∈ E

where f(F) = 1−
∏
e∈F (1− pe).

Techniques in [GKS19]

1

2

3

4

5

0.5

0.2

0.3

0.6

F

f(F) = 1−0.5×0.8×0.7

x(1,2)+x(1,3)+x(1,4) ≤ f(F)

LP Relaxation
For bipartite graph G = (A ∪B,E),

max
∑
e∈E

xe · w(e)

s.t.
∑
e∈F

xe ≤ f(F) ∀v ∈ A,F ⊆ δ(v)∑
e∈δ(u)

xe ≤ 1 ∀u ∈ B

xe ≥ 0 ∀e ∈ E

where f(F) = 1−
∏
e∈F (1− pe).

Techniques in [GKS19]

Lemma ([GSK19])

For any vertex v ∈ A, there exists a distribution Dv over
permutations of δ(v) such that:

I Sample σ ∼ Dv. Each edge e is the first edge that exists in σ
with probability exactly x∗e.

Techniques in [GKS19]

1

2

3

4

5

6

7

8

RCRS
I For each vertex v ∈ A, it activates

the first ei that exists.
I Each edge is activated exactly with

probability x∗e.

I For each vertex v′ ∈ B, multiple
edges may be active.
I We sample a random order of all

vertices in A and pick one by
RCRS. ∑

e∈δ(u)

x∗e ≤ 1 ∀u ∈ B

Techniques in [GKS19]

1

2

3

4

5

6

7

8

RCRS
I For each vertex v ∈ A, it activates

the first ei that exists.
I Each edge is activated exactly with

probability x∗e.

I For each vertex v′ ∈ B, multiple
edges may be active.
I We sample a random order of all

vertices in A and pick one by
RCRS. ∑

e∈δ(u)

x∗e ≤ 1 ∀u ∈ B

Techniques in [GKS19]

1

2

3

4

5

6

7

8

RCRS
I For each vertex v ∈ A, it activates

the first ei that exists.
I Each edge is activated exactly with

probability x∗e.

I For each vertex v′ ∈ B, multiple
edges may be active.
I We sample a random order of all

vertices in A and pick one by
RCRS. ∑

e∈δ(u)

x∗e ≤ 1 ∀u ∈ B

Techniques in [GKS19]

4

1

2

3

5

6

7

8

RCRS
I For each vertex v ∈ A, it activates

the first ei that exists.
I Each edge is activated exactly with

probability x∗e.

I For each vertex v′ ∈ B, multiple
edges may be active.
I We sample a random order of all

vertices in A and pick one by
RCRS. ∑

e∈δ(u)

x∗e ≤ 1 ∀u ∈ B

Generalize [GKS19] to General Graphs

1

2 3

4

LP Relaxation

max
∑
e∈E

xe · w(e)

s.t.
∑
e∈F

xe ≤ f(F) ∀v ∈ V, F ⊆ δ(v)

xe ≥ 0 ∀e ∈ E

where f(F) = 1−
∏
e∈F (1− pe).

Generalize [GKS19] to General Graphs

3 2 1 4

Generalize RCRS
We sample a random arrival order of all
vertices. Let δ′(v) be the edges to
vertices that arrives before v.

Lemma
For any vertex v ∈ V , there exists a
distribution Dv over permutations of
δ′(v) such that

I Sample σ ∼ Dv. Each edge e is the
first edge that exists in σ with
probability exactly x∗e.

Generalize [GKS19] to General Graphs

3 2 1 4

Generalize RCRS
We sample a random arrival order of all
vertices. Let δ′(v) be the edges to
vertices that arrives before v.

Lemma
For any vertex v ∈ V , there exists a
distribution Dv over permutations of
δ′(v) such that

I Sample σ ∼ Dv. Each edge e is the
first edge that exists in σ with
probability exactly x∗e.

Generalize [GKS19] to General Graphs

3 2 1 4

Generalize RCRS
We sample a random arrival order of all
vertices. Let δ′(v) be the edges to
vertices that arrives before v.

Lemma
For any vertex v ∈ V , there exists a
distribution Dv over permutations of
δ′(v) such that

I Sample σ ∼ Dv. Each edge e is the
first edge that exists in σ with
probability exactly x∗e.

Generalize [GKS19] to General Graphs

3 2 1 4

Generalize RCRS
We sample a random arrival order of all
vertices. Let δ′(v) be the edges to
vertices that arrives before v.

Lemma
For any vertex v ∈ V , there exists a
distribution Dv over permutations of
δ′(v) such that

I Sample σ ∼ Dv. Each edge e is the
first edge that exists in σ with
probability exactly x∗e.

Random Order Vertex Arrival CRS

3 2 1 4

0.2

0.1
0.5

0.5

0.2

Given a graph G = (V,E,x) satisfying∑
e∈δ(u) xe ≤ 1 for each u ∈ V , all

vertices of G arrive online in a uniformly
random order.

Upon the arrival of a vertex v, at most
one edge e connecting v and an arrived
vertex is active w.p. xe.

Random Order Vertex Arrival CRS

3 2 1 4

Given a graph G = (V,E,x) satisfying∑
e∈δ(u) xe ≤ 1 for each u ∈ V , all

vertices of G arrive online in a uniformly
random order.

Upon the arrival of a vertex v, at most
one edge e connecting v and an arrived
vertex is active w.p. xe.

Random Order Vertex Arrival CRS

3 2 1 4
0.1

Given a graph G = (V,E,x) satisfying∑
e∈δ(u) xe ≤ 1 for each u ∈ V , all

vertices of G arrive online in a uniformly
random order.

Upon the arrival of a vertex v, at most
one edge e connecting v and an arrived
vertex is active w.p. xe.

Random Order Vertex Arrival CRS

3 2 1 4

0.2

0.2

Given a graph G = (V,E,x) satisfying∑
e∈δ(u) xe ≤ 1 for each u ∈ V , all

vertices of G arrive online in a uniformly
random order.

Upon the arrival of a vertex v, at most
one edge e connecting v and an arrived
vertex is active w.p. xe.

Random Order Vertex Arrival CRS

3 2 1 4
0.5

0.5

Given a graph G = (V,E,x) satisfying∑
e∈δ(u) xe ≤ 1 for each u ∈ V , all

vertices of G arrive online in a uniformly
random order.

Upon the arrival of a vertex v, at most
one edge e connecting v and an arrived
vertex is active w.p. xe.

Random Order Vertex Arrival CRS

3 2 1 4

0.2

0.1
0.5

0.5

0.2

The scheme must irrevocably decide
whether to select the active edge (if any
exists), upon the arrival of each vertex.

A vertex arrival RCRS is c-selectable if
Pr[e is selected | e is active] ≥ c for every
e ∈ E.

Our Algorithm

1

4

3

2

0.5

0.2

0.2

0.5

0.1

Our algorithm briefly consists of three
steps:

I Add dummy vertices and edges to
the graph so that the resulting graph
is 1-regular, i.e.

∑
(u,v)∈E xu,v = 1

for every u ∈ V .

I Prune each edge from xe to

we = f(xe)
def
= 3xe

3+2xe
.

I Run greedy on the pruned instance.

Our Algorithm

1

4

3

2

5
0.5

0.2

0.2

0.5

0.1

0.7

0.2

0.1 Add dummy vertices

We can make the graph 1-regular, i.e.∑
(u,v)∈E′ xu,v = 1 for every u ∈ V ′, by

adding at most |V | dummy vertices.

Our Algorithm

1

4

3

2

5
0.375

0.176

0.176

0.375

0.094

0.477

0.176

0.094

Prune and Greedy

We then prune each edge from xe to

we = f(xe)
def
= 3xe

3+2xe
and run greedy on

the pruned instance.

That is to say, for any active edge
e = (u, v), if both u and v is not matched,

it will select it with probability f(xe)
xe

.

Analysis

t
tu

u

tv

v

tz

z

tz

z

We want to lower bound

Pr[v → u | tv = t]

= f(xuv) · Pr[tu ≤ t, u unmatched @t | tv = t]

= f(xuv) · (t− Pr[u matched @t | tv = t])

where

Pr[u matched @t | tv = t]

=
∑
z 6=u,v

Pr[(u, z) matched before t | tv = t]︸ ︷︷ ︸
upper bound

Analysis

t
tu

u

tv

v

tz

z

tz

z

We want to lower bound

Pr[v → u | tv = t]

= f(xuv) · Pr[tu ≤ t, u unmatched @t | tv = t]

= f(xuv) · (t− Pr[u matched @t | tv = t])

where

Pr[u matched @t | tv = t]

=
∑
z 6=u,v

Pr[(u, z) matched before t | tv = t]︸ ︷︷ ︸
upper bound

Analysis

t
tu

u

tv

v

tz

z

tz

z

We want to lower bound

Pr[v → u | tv = t]

= f(xuv) · Pr[tu ≤ t, u unmatched @t | tv = t]

= f(xuv) · (t− Pr[u matched @t | tv = t])

where

Pr[u matched @t | tv = t]

=
∑
z 6=u,v

Pr[(u, z) matched before t | tv = t]︸ ︷︷ ︸
upper bound

A direct analysis∑
z 6=u,v

Pr[(u, z) matched before t | tv = t] ≤
∑
z 6=u,v

t2f(xuz) ≤ t2

Analysis

t
tu

u

tv

v

tz

z

tz

z

We want to lower bound

Pr[v → u | tv = t]

= f(xuv) · Pr[tu ≤ t, u unmatched @t | tv = t]

= f(xuv) · (t− Pr[u matched @t | tv = t])

where

Pr[u matched @t | tv = t]

=
∑
z 6=u,v

Pr[(u, z) matched before t | tv = t]︸ ︷︷ ︸
upper bound

Recursive analysis

Pr[(u, z) matched before t | tv = t]

=

∫ t

0

(
Pr[u→ z | tu = s, tv = t] + Pr[z → u | tz = s, tv = t]

)
ds

Need an upper bound rather than a lower bound. 1-regularity!

Analysis

t
tu

u

tv

v

tz

z

tz

z

We want to lower bound

Pr[v → u | tv = t]

= f(xuv) · Pr[tu ≤ t, u unmatched @t | tv = t]

= f(xuv) · (t− Pr[u matched @t | tv = t])

where

Pr[u matched @t | tv = t]

=
∑
z 6=u,v

Pr[(u, z) matched before t | tv = t]︸ ︷︷ ︸
upper bound

Recursive analysis

Pr[(u, z) matched before t | tv = t]

=

∫ t

0

(
Pr[u→ z | tu = s, tv = t] + Pr[z → u | tz = s, tv = t]

)
ds

Need an upper bound rather than a lower bound. 1-regularity!

Analysis

t
tu

u

tv

v

tz

z

tz

z

We want to lower bound

Pr[v → u | tv = t]

= f(xuv) · Pr[tu ≤ t, u unmatched @t | tv = t]

= f(xuv) · (t− Pr[u matched @t | tv = t])

where

Pr[u matched @t | tv = t]

=
∑
z 6=u,v

Pr[(u, z) matched before t | tv = t]︸ ︷︷ ︸
upper bound

Recursive analysis

Pr[(u, z) matched before t | tv = t]

=

∫ t

0

(
Pr[u→ z | tu = s, tv = t] + Pr[z → u | tz = s, tv = t]

)
ds

Need an upper bound rather than a lower bound. 1-regularity!

Analysis

t
tu

u

tv

v

tz

z

tz

z

We want to lower bound

Pr[v → u | tv = t]

= f(xuv) · Pr[tu ≤ t, u unmatched @t | tv = t]

= f(xuv) · (t− Pr[u matched @t | tv = t])

where

Pr[u matched @t | tv = t]

=
∑
z 6=u,v

Pr[(u, z) matched before t | tv = t]︸ ︷︷ ︸
upper bound

Recursive analysis

Pr[(u, z) matched before t | tv = t]

=

∫ t

0

(
Pr[u→ z | tu = s, tv = t] + Pr[z → u | tz = s, tv = t]

)
ds

Need an upper bound rather than a lower bound.

1-regularity!

Analysis

t
tu

u

tv

v

tz

z

tz

z

We want to lower bound

Pr[v → u | tv = t]

= f(xuv) · Pr[tu ≤ t, u unmatched @t | tv = t]

= f(xuv) · (t− Pr[u matched @t | tv = t])

where

Pr[u matched @t | tv = t]

=
∑
z 6=u,v

Pr[(u, z) matched before t | tv = t]︸ ︷︷ ︸
upper bound

Recursive analysis

Pr[(u, z) matched before t | tv = t]

=

∫ t

0

(
Pr[u→ z | tu = s, tv = t] + Pr[z → u | tz = s, tv = t]

)
ds

Need an upper bound rather than a lower bound. 1-regularity!

Conclusion

Theorem (Our result)

For general graphs, there is a 8
15 ≈ 0.533-approximation algorithm

for maximum weight matching in query-commit (and price of
information) model.

I There is no vertex arrival RCRS for matching better than
1
2 + 1

2e2
≈ 0.567-selectable.

I One interesting open problem is to close the gap here.

Conclusion

Theorem (Our result)

For general graphs, there is a 8
15 ≈ 0.533-approximation algorithm

for maximum weight matching in query-commit (and price of
information) model.

I There is no vertex arrival RCRS for matching better than
1
2 + 1

2e2
≈ 0.567-selectable.

I One interesting open problem is to close the gap here.

Conclusion

Theorem (Our result)

For general graphs, there is a 8
15 ≈ 0.533-approximation algorithm

for maximum weight matching in query-commit (and price of
information) model.

I There is no vertex arrival RCRS for matching better than
1
2 + 1

2e2
≈ 0.567-selectable.

I One interesting open problem is to close the gap here.

Thank you!

