Random Order Vertex Arrival Contention Resolution Schemes For Matching, With Applications

Hu Fu ${ }^{1}$, Zhihao Gavin Tang ${ }^{1}$, Hongxun $\mathbf{W u}^{2}$, Jinzhao Wu^{3}, and Qianfan Zhang ${ }^{2}$
${ }^{1}$ ITCS, Shanghai University of Finance and Economics
${ }^{2}$ IIIS, Tsinghua University
${ }^{3}$ Peking University

Query Commit

Query-Commit MWBM

Chen, Immorlica, Karlin, Mahdian, and Rudra [CIKMR09] first considered the matching problem in query-commit model.

Query Commit

Query-Commit MWBM

For each edge e there is a tuple $\left(w_{e}, p_{e}\right)$. Each edge e independently exists with probability p_{e} and has weight w_{e}.

Utility $=10$

Query Commit

Query-Commit MWBM

For each edge e there is a tuple $\left(w_{e}, p_{e}\right)$. Each edge e independently exists with probability p_{e} and has weight w_{e}.

Utility $=10$

Query Commit

Query-Commit MWBM

For each edge e there is a tuple $\left(w_{e}, p_{e}\right)$. Each edge e independently exists with probability p_{e} and has weight w_{e}.

Utility $=10+6$

Query Commit

Query-Commit MWBM

For each edge e there is a tuple $\left(w_{e}, p_{e}\right)$. Each edge e independently exists with probability p_{e} and has weight w_{e}.

$$
\text { Utility }=10+6+4=20
$$

Price of Information

Pol MWBM

Singla [Singla17] introduced the price-of-information model.

$$
\begin{aligned}
& \begin{array}{r}
1 \bigcirc\left(\mathcal{U}_{[0,8]}, 2\right) \ldots \\
\\
\\
\\
\left(\mathcal{U}_{[3,5]}, 4\right)
\end{array} \ldots \\
& 2 \bigcirc=こ=-\left(\mathcal{U}_{[0,7]}, 3\right) \ldots{ }^{2} \\
& 3 \bigcap_{\ldots}\left(\mathcal{U}_{[2,8]}, 1\right)^{\cdots-\infty}
\end{aligned}
$$

Price of Information

Pol MWBM

For each edge e there is a tuple $\left(\mathcal{D}_{e}, \pi_{e}\right)$. The weight of edge e follows from distribution \mathcal{D}_{e} and we can query it by paying cost π_{e}.

Total cost $=2$

Price of Information

Pol MWBM

For each edge e there is a tuple $\left(\mathcal{D}_{e}, \pi_{e}\right)$. The weight of edge e follows from distribution \mathcal{D}_{e} and we can query it by paying cost π_{e}.

Total $\operatorname{cost}=2+1$

Price of Information

Pol MWBM

For each edge e there is a tuple $\left(\mathcal{D}_{e}, \pi_{e}\right)$. The weight of edge e follows from distribution \mathcal{D}_{e} and we can query it by paying cost π_{e}.

$$
\text { Total cost }=2+1+3=6
$$

Price of Information

Pol MWBM
For each edge e there is a tuple $\left(\mathcal{D}_{e}, \pi_{e}\right)$. The weight of edge e follows from distribution \mathcal{D}_{e} and we can query it by paying cost π_{e}.

$$
\begin{aligned}
\text { Total cost } & =2+1+3=6 \\
\text { Max weight } & =5.5+6.2=11.7
\end{aligned}
$$

Price of Information

Pol MWBM
For each edge e there is a tuple $\left(\mathcal{D}_{e}, \pi_{e}\right)$. The weight of edge e follows from distribution \mathcal{D}_{e} and we can query it by paying cost π_{e}.

Total cost $=2+1+3=6$
Max weight $=5.5+6.2=11.7$
Utility $=$ Max weight - Total cost $=5.7$

Stochastic Matching

The paper by Gamlath, Kale, and Svensson proved the following result.

Theorem ([GKS19])
For bipartite graphs, there is a $1-\frac{1}{e} \approx 0.632$-approximation algorithm for maximum weight matching in query-commit (and price of information) model.

Stochastic Matching

The paper by Gamlath, Kale, and Svensson proved the following result.

Theorem ([GKS19])

For bipartite graphs, there is a $1-\frac{1}{e} \approx 0.632$-approximation algorithm for maximum weight matching in query-commit (and price of information) model.

Theorem (Our result)
For general graphs, there is a $\frac{8}{15} \approx 0.533$-approximation algorithm for maximum weight matching in query-commit (and price of information) model.

Result in [GKS19]

> LP Relaxation for Bipartite Matching

Result in [GKS19]

Result in [GKS19]

Result in [GKS19]

Our Observation

Our Observation

(Random) Contention Resolution Schemes

Given a set $[n]$ of elements:

- i is active independently with probability x_{i} where $\sum_{i \in[n]} x_{i} \leq 1$.
- (Elements arrive one by one in a random order.)
- We can select at most one element (which must be active).

A CRS is called α-selectable if $\operatorname{Pr}[i$ selected $\mid i$ active $] \geq \alpha$ for all i.

Techniques in [GKS19]

LP Relaxation
For bipartite graph $G=(A \cup B, E)$,

$$
\begin{array}{lr}
\max \sum_{e \in E} x_{e} \cdot w(e) & \\
\text { s.t. } \sum_{e \in F} x_{e} \leq f(F) & \forall v \in A, F \subseteq \delta(v) \\
\sum_{e \in \delta(u)} x_{e} \leq 1 & \forall u \in B \\
x_{e} \geq 0 & \forall e \in E
\end{array}
$$

where $f(F)=1-\prod_{e \in F}\left(1-p_{e}\right)$.

Techniques in [GKS19]

LP Relaxation
For bipartite graph $G=(A \cup B, E)$,

$$
\begin{array}{rr}
\max & \sum_{e \in E} x_{e} \cdot w(e) \\
\text { s.t. } & \sum_{e \in F} x_{e} \leq f(F) \quad \forall v \in A, F \subseteq \delta(v) \\
\sum_{e \in \delta(u)} x_{e} \leq 1 & \forall u \in B
\end{array}
$$

$$
f(F)=1-0.5 \times 0.8 \times 0.7
$$

$$
x_{e} \geq 0
$$

$\forall e \in E$

$$
x_{(1,2)}+x_{(1,3)}+x_{(1,4)} \leq f(F) \text { where } f(F)=1-\prod_{e \in F}\left(1-p_{e}\right) .
$$

Techniques in [GKS19]

Lemma ([GSK19])

For any vertex $v \in A$, there exists a distribution D^{v} over permutations of $\delta(v)$ such that:

- Sample $\sigma \sim D_{v}$. Each edge e is the first edge that exists in σ with probability exactly x_{e}^{*}.

Techniques in [GKS19]

RCRS

- For each vertex $v \in A$, it activates the first e_{i} that exists.

- Each edge is activated exactly with probability x_{e}^{*}.

Techniques in [GKS19]

RCRS

- For each vertex $v \in A$, it activates the first e_{i} that exists.

- Each edge is activated exactly with probability x_{e}^{*}.

Techniques in [GKS19]

RCRS

- For each vertex $v \in A$, it activates the first e_{i} that exists.
- Each edge is activated exactly with probability x_{e}^{*}.
- For each vertex $v^{\prime} \in B$, multiple edges may be active.
- We sample a random order of all vertices in A and pick one by RCRS.

$$
\sum_{e \in \delta(u)} x_{e}^{*} \leq 1 \quad \forall u \in B
$$

Techniques in [GKS19]

RCRS

- For each vertex $v \in A$, it activates the first e_{i} that exists.
- Each edge is activated exactly with probability x_{e}^{*}.
- For each vertex $v^{\prime} \in B$, multiple edges may be active.
- We sample a random order of all vertices in A and pick one by RCRS.

$$
\sum_{e \in \delta(u)} x_{e}^{*} \leq 1 \quad \forall u \in B
$$

Generalize [GKS19] to General Graphs

LP Relaxation

$$
\begin{aligned}
& \max \sum_{e \in E} x_{e} \cdot w(e) \\
& \qquad \begin{array}{l}
\text { s.t. } \sum_{e \in F} x_{e} \leq f(F) \quad \forall v \in V, F \subseteq \delta(v) \\
\\
x_{e} \geq 0 \\
\text { where } f(F)=1-\prod_{e \in F}\left(1-p_{e}\right)
\end{array} \quad \forall e \in E
\end{aligned}
$$

Generalize [GKS19] to General Graphs

Generalize RCRS
We sample a random arrival order of all vertices. Let $\delta^{\prime}(v)$ be the edges to vertices that arrives before v.

Generalize [GKS19] to General Graphs

Generalize RCRS

We sample a random arrival order of all vertices. Let $\delta^{\prime}(v)$ be the edges to vertices that arrives before v.

Lemma

For any vertex $v \in V$, there exists a distribution D^{v} over permutations of $\delta^{\prime}(v)$ such that

- Sample $\sigma \sim D_{v}$. Each edge e is the first edge that exists in σ with probability exactly x_{e}^{*}.

Generalize [GKS19] to General Graphs

Generalize RCRS

We sample a random arrival order of all vertices. Let $\delta^{\prime}(v)$ be the edges to vertices that arrives before v.

Lemma

For any vertex $v \in V$, there exists a distribution D^{v} over permutations of $\delta^{\prime}(v)$ such that

- Sample $\sigma \sim D_{v}$. Each edge e is the first edge that exists in σ with probability exactly x_{e}^{*}.

Generalize [GKS19] to General Graphs

Generalize RCRS

We sample a random arrival order of all vertices. Let $\delta^{\prime}(v)$ be the edges to vertices that arrives before v.

Lemma

For any vertex $v \in V$, there exists a distribution D^{v} over permutations of $\delta^{\prime}(v)$ such that

- Sample $\sigma \sim D_{v}$. Each edge e is the first edge that exists in σ with probability exactly x_{e}^{*}.

Random Order Vertex Arrival CRS

Given a graph $G=(V, E, \boldsymbol{x})$ satisfying $\sum_{e \in \delta(u)} x_{e} \leq 1$ for each $u \in V$, all vertices of G arrive online in a uniformly random order.

Upon the arrival of a vertex v, at most one edge e connecting v and an arrived vertex is active w.p. x_{e}.

Random Order Vertex Arrival CRS

Given a graph $G=(V, E, \boldsymbol{x})$ satisfying

$\sum_{e \in \delta(u)} x_{e} \leq 1$ for each $u \in V$, all
vertices of G arrive online in a uniformly
random order.

3020

Upon the arrival of a vertex v, at most
one edge e connecting v and an arrived
vertex is active w.p. x_{e}.

Random Order Vertex Arrival CRS

Random Order Vertex Arrival CRS

Given a graph $G=(V, E, \boldsymbol{x})$ satisfying $\sum_{e \in \delta(u)} x_{e} \leq 1$ for each $u \in V$, all vertices of G arrive online in a uniformly random order.

Upon the arrival of a vertex v, at most one edge e connecting v and an arrived vertex is active w.p. x_{e}.

Random Order Vertex Arrival CRS

Given a graph $G=(V, E, \boldsymbol{x})$ satisfying $\sum_{e \in \delta(u)} x_{e} \leq 1$ for each $u \in V$, all vertices of G arrive online in a uniformly random order.

Upon the arrival of a vertex v, at most one edge e connecting v and an arrived vertex is active w.p. x_{e}.

Random Order Vertex Arrival CRS

The scheme must irrevocably decide whether to select the active edge (if any exists), upon the arrival of each vertex.

A vertex arrival RCRS is c-selectable if $\operatorname{Pr}[e$ is selected $\mid e$ is active $] \geq c$ for every $e \in E$.

Our Algorithm

Our algorithm briefly consists of three
 steps:

- Add dummy vertices and edges to the graph so that the resulting graph is 1-regular, i.e. $\sum_{(u, v) \in E} x_{u, v}=1$ for every $u \in V$.
- Prune each edge from x_{e} to $w_{e}=f\left(x_{e}\right) \stackrel{\text { def }}{=} \frac{3 x_{e}}{3+2 x_{e}}$.
- Run greedy on the pruned instance.

Our Algorithm

Our Algorithm

Prune and Greedy

We then prune each edge from x_{e} to $w_{e}=f\left(x_{e}\right) \stackrel{\text { def }}{=} \frac{3 x_{e}}{3+2 x_{e}}$ and run greedy on the pruned instance.

That is to say, for any active edge $e=(u, v)$, if both u and v is not matched, it will select it with probability $\frac{f\left(x_{e}\right)}{x_{e}}$.

Analysis

We want to lower bound

$$
\begin{aligned}
& \operatorname{Pr}\left[v \rightarrow u \mid t_{v}=t\right] \\
= & f\left(x_{u v}\right) \cdot \operatorname{Pr}\left[t_{u} \leq t, u \text { unmatched } @ t \mid t_{v}=t\right] \\
= & f\left(x_{u v}\right) \cdot\left(t-\operatorname{Pr}\left[u \text { matched } @ t \mid t_{v}=t\right]\right)
\end{aligned}
$$

Analysis

We want to lower bound

$$
\begin{aligned}
& \operatorname{Pr}\left[v \rightarrow u \mid t_{v}=t\right] \\
&= f\left(x_{u v}\right) \cdot \operatorname{Pr}\left[t_{u} \leq t, u \text { unmatched } @ t \mid t_{v}=t\right] \\
&= f\left(x_{u v}\right) \cdot\left(t-\operatorname{Pr}\left[u \text { matched } @ t \mid t_{v}=t\right]\right) \\
& \text { where }
\end{aligned}
$$

$\operatorname{Pr}\left[u\right.$ matched $\left.@ t \mid t_{v}=t\right]$
$t_{u} \quad t_{v}=\sum_{z \neq u, v} \underbrace{\operatorname{Pr}\left[(u, z) \text { matched before } t \mid t_{v}=t\right]}_{\text {upper bound }}$

Analysis

We want to lower bound

$$
\begin{aligned}
& \operatorname{Pr}\left[v \rightarrow u \mid t_{v}=t\right] \\
= & f\left(x_{u v}\right) \cdot \operatorname{Pr}\left[t_{u} \leq t, u \text { unmatched } @ t \mid t_{v}=t\right] \\
= & f\left(x_{u v}\right) \cdot\left(t-\operatorname{Pr}\left[u \text { matched } @ t \mid t_{v}=t\right]\right)
\end{aligned}
$$

where

$$
\operatorname{Pr}\left[u \text { matched } @ t \mid t_{v}=t\right]
$$

$$
t_{u} \quad t_{v}=\sum_{z \neq u, v} \underbrace{\operatorname{Pr}\left[(u, z) \text { matched before } t \mid t_{v}=t\right]}_{\text {upper bound }}
$$

A direct analysis
$\sum_{z \neq u, v} \operatorname{Pr}\left[(u, z)\right.$ matched before $\left.t \mid t_{v}=t\right] \leq \sum_{z \neq u, v} t^{2} f\left(x_{u z}\right) \leq t^{2}$

Analysis

We want to lower bound

$$
\begin{aligned}
& \operatorname{Pr}\left[v \rightarrow u \mid t_{v}=t\right] \\
= & f\left(x_{u v}\right) \cdot \operatorname{Pr}\left[t_{u} \leq t, u \text { unmatched } @ t \mid t_{v}=t\right] \\
= & f\left(x_{u v}\right) \cdot\left(t-\operatorname{Pr}\left[u \text { matched } @ t \mid t_{v}=t\right]\right)
\end{aligned}
$$

where

$$
\operatorname{Pr}\left[u \text { matched } @ t \mid t_{v}=t\right]
$$

$$
t_{u} \quad t_{v}
$$

$$
=\sum_{z \neq u, v} \underbrace{\operatorname{Pr}\left[(u, z) \text { matched before } t \mid t_{v}=t\right]}_{\text {upper bound }}
$$

Recursive analysis
$\operatorname{Pr}\left[(u, z)\right.$ matched before $\left.t \mid t_{v}=t\right]$
$=\int_{0}^{t}\left(\operatorname{Pr}\left[u \rightarrow z \mid t_{u}=s, t_{v}=t\right]+\operatorname{Pr}\left[z \rightarrow u \mid t_{z}=s, t_{v}=t\right]\right) \mathrm{d} s$

Analysis

We want to lower bound

$$
\begin{aligned}
& \operatorname{Pr}\left[v \rightarrow u \mid t_{v}=t\right] \\
&= f\left(x_{u v}\right) \cdot \operatorname{Pr}\left[t_{u} \leq t, u \text { unmatched } @ t \mid t_{v}=t\right] \\
&= f\left(x_{u v}\right) \cdot\left(t-\operatorname{Pr}\left[u \text { matched } @ t \mid t_{v}=t\right]\right) \\
& \text { where }
\end{aligned}
$$

$$
\operatorname{Pr}\left[u \text { matched } @ t \mid t_{v}=t\right]
$$

$t_{z} \quad t_{u} \quad t_{v}$

Recursive analysis
$\operatorname{Pr}\left[(u, z)\right.$ matched before $\left.t \mid t_{v}=t\right]$
$=\int_{0}^{t}\left(\operatorname{Pr}\left[u \rightarrow z \mid t_{u}=s, t_{v}=t\right]+\operatorname{Pr}\left[z \rightarrow u \mid t_{z}=s, t_{v}=t\right]\right) \mathrm{d} s$

Analysis

We want to lower bound

$$
\begin{aligned}
& \operatorname{Pr}\left[v \rightarrow u \mid t_{v}=t\right] \\
&= f\left(x_{u v}\right) \cdot \operatorname{Pr}\left[t_{u} \leq t, u \text { unmatched } @ t \mid t_{v}=t\right] \\
&= f\left(x_{u v}\right) \cdot\left(t-\operatorname{Pr}\left[u \text { matched } @ t \mid t_{v}=t\right]\right) \\
& \text { where }
\end{aligned}
$$

$$
\operatorname{Pr}\left[u \text { matched } @ t \mid t_{v}=t\right]
$$

$$
\begin{array}{lll}
t_{u} & t_{z} & t_{v}
\end{array}
$$

$$
=\sum_{z \neq u, v} \underbrace{\operatorname{Pr}\left[(u, z) \text { matched before } t \mid t_{v}=t\right]}_{\text {upper bound }}
$$

Recursive analysis
$\operatorname{Pr}\left[(u, z)\right.$ matched before $\left.t \mid t_{v}=t\right]$
$=\int_{0}^{t}\left(\operatorname{Pr}\left[u \rightarrow z \mid t_{u}=s, t_{v}=t\right]+\operatorname{Pr}\left[z \rightarrow u \mid t_{z}=s, t_{v}=t\right]\right) \mathrm{d} s$

Analysis

We want to lower bound

$$
\begin{aligned}
& \operatorname{Pr}\left[v \rightarrow u \mid t_{v}=t\right] \\
&= f\left(x_{u v}\right) \cdot \operatorname{Pr}\left[t_{u} \leq t, u \text { unmatched } @ t \mid t_{v}=t\right] \\
&= f\left(x_{u v}\right) \cdot\left(t-\operatorname{Pr}\left[u \text { matched } @ t \mid t_{v}=t\right]\right) \\
& \text { where }
\end{aligned}
$$

Recursive analysis
$\operatorname{Pr}\left[(u, z)\right.$ matched before $\left.t \mid t_{v}=t\right]$
$=\int_{0}^{t}\left(\operatorname{Pr}\left[u \rightarrow z \mid t_{u}=s, t_{v}=t\right]+\operatorname{Pr}\left[z \rightarrow u \mid t_{z}=s, t_{v}=t\right]\right) \mathrm{d} s$
Need an upper bound rather than a lower bound.

Analysis

We want to lower bound

$$
\begin{aligned}
& \operatorname{Pr}\left[v \rightarrow u \mid t_{v}=t\right] \\
&= f\left(x_{u v}\right) \cdot \operatorname{Pr}\left[t_{u} \leq t, u \text { unmatched } @ t \mid t_{v}=t\right] \\
&= f\left(x_{u v}\right) \cdot\left(t-\operatorname{Pr}\left[u \text { matched } @ t \mid t_{v}=t\right]\right) \\
& \text { where }
\end{aligned}
$$

Recursive analysis
$\operatorname{Pr}\left[(u, z)\right.$ matched before $\left.t \mid t_{v}=t\right]$
$=\int_{0}^{t}\left(\operatorname{Pr}\left[u \rightarrow z \mid t_{u}=s, t_{v}=t\right]+\operatorname{Pr}\left[z \rightarrow u \mid t_{z}=s, t_{v}=t\right]\right) \mathrm{d} s$
Need an upper bound rather than a lower bound. 1-regularity!

Conclusion

Theorem (Our result)
For general graphs, there is a $\frac{8}{15} \approx 0.533$-approximation algorithm for maximum weight matching in query-commit (and price of information) model.

Conclusion

Theorem (Our result)
For general graphs, there is a $\frac{8}{15} \approx 0.533$-approximation algorithm for maximum weight matching in query-commit (and price of information) model.

- There is no vertex arrival RCRS for matching better than $\frac{1}{2}+\frac{1}{2 e^{2}} \approx 0.567$-selectable.

Conclusion

Theorem (Our result)
For general graphs, there is a $\frac{8}{15} \approx 0.533$-approximation algorithm for maximum weight matching in query-commit (and price of information) model.

- There is no vertex arrival RCRS for matching better than $\frac{1}{2}+\frac{1}{2 e^{2}} \approx 0.567$-selectable.
- One interesting open problem is to close the gap here.

Thank you!

