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Query Commit

Query-Commit MWBM

Chen, Immorlica, Karlin, Mahdian, and Rudra [CIKMR09] first
considered the matching problem in query-commit model.
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Query Commit

Query-Commit MWBM

For each edge e there is a tuple (we, pe). Each edge e
independently exists with probability pe and has weight we.
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Price of Information

PoI MWBM
Singla [Singla17] introduced the price-of-information model.

1

2

3

4

5

(U[0,8], 2)

5.55.5

(U[3,5], 4)

(U[3,5], 4)

(U[2,8], 1)

3.73.7

(U[0,7], 3)

6.26.2

Total cost = 2 + 1 + 3 = 6

Max weight = 5.5 + 6.2 = 11.7

Utility = Max weight− Total cost = 5.7



Price of Information

PoI MWBM
For each edge e there is a tuple (De, πe). The weight of edge e
follows from distribution De and we can query it by paying cost πe.
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Price of Information

PoI MWBM
For each edge e there is a tuple (De, πe). The weight of edge e
follows from distribution De and we can query it by paying cost πe.
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Stochastic Matching

The paper by Gamlath, Kale, and Svensson proved the following
result.

Theorem ([GKS19])

For bipartite graphs, there is a 1− 1
e ≈ 0.632-approximation

algorithm for maximum weight matching in query-commit (and
price of information) model.

Theorem (Our result)

For general graphs, there is a 8
15 ≈ 0.533-approximation algorithm

for maximum weight matching in query-commit (and price of
information) model.
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Result in [GKS19]

LP Relaxation for Bipartite Matching

Rounding this LP

Prophet Secretary (in bipartite graph)

(1− 1/e)-approx QC Algorithm (1− 1/e)-approx PoI Algorithm
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LP Relaxation for Bipartite Matching
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Random Order CRS (RCRS)
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Our Observation

LP Relaxation for General Matching

Rounding this LP

Random Order Vertex Arrival CRS

8
15 -approx QC Algorithm 8

15 -approx PoI Algorithm



(Random) Contention Resolution Schemes

Given a set [n] of elements:

I i is active independently with probability xi where∑
i∈[n] xi ≤ 1.

I (Elements arrive one by one in a random order.)

I We can select at most one element (which must be active).

A CRS is called α-selectable if Pr[i selected | i active] ≥ α for all i.



Techniques in [GKS19]
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xe ≤ f(F ) ∀v ∈ A,F ⊆ δ(v)∑
e∈δ(u)

xe ≤ 1 ∀u ∈ B

xe ≥ 0 ∀e ∈ E

where f(F ) = 1−
∏
e∈F (1− pe).
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Techniques in [GKS19]

Lemma ([GSK19])

For any vertex v ∈ A, there exists a distribution Dv over
permutations of δ(v) such that:

I Sample σ ∼ Dv. Each edge e is the first edge that exists in σ
with probability exactly x∗e.
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I For each vertex v ∈ A, it activates

the first ei that exists.
I Each edge is activated exactly with

probability x∗e.

I For each vertex v′ ∈ B, multiple
edges may be active.
I We sample a random order of all

vertices in A and pick one by
RCRS. ∑

e∈δ(u)

x∗e ≤ 1 ∀u ∈ B
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Generalize [GKS19] to General Graphs

1

2 3

4

LP Relaxation

max
∑
e∈E

xe · w(e)

s.t.
∑
e∈F

xe ≤ f(F ) ∀v ∈ V, F ⊆ δ(v)

xe ≥ 0 ∀e ∈ E

where f(F ) = 1−
∏
e∈F (1− pe).



Generalize [GKS19] to General Graphs
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Generalize RCRS
We sample a random arrival order of all
vertices. Let δ′(v) be the edges to
vertices that arrives before v.

Lemma
For any vertex v ∈ V , there exists a
distribution Dv over permutations of
δ′(v) such that

I Sample σ ∼ Dv. Each edge e is the
first edge that exists in σ with
probability exactly x∗e.
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random order.

Upon the arrival of a vertex v, at most
one edge e connecting v and an arrived
vertex is active w.p. xe.
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Random Order Vertex Arrival CRS
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The scheme must irrevocably decide
whether to select the active edge (if any
exists), upon the arrival of each vertex.

A vertex arrival RCRS is c-selectable if
Pr[e is selected | e is active] ≥ c for every
e ∈ E.



Our Algorithm
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steps:

I Add dummy vertices and edges to
the graph so that the resulting graph
is 1-regular, i.e.

∑
(u,v)∈E xu,v = 1

for every u ∈ V .

I Prune each edge from xe to

we = f(xe)
def
= 3xe

3+2xe
.

I Run greedy on the pruned instance.
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0.1 Add dummy vertices

We can make the graph 1-regular, i.e.∑
(u,v)∈E′ xu,v = 1 for every u ∈ V ′, by

adding at most |V | dummy vertices.



Our Algorithm
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Prune and Greedy

We then prune each edge from xe to

we = f(xe)
def
= 3xe

3+2xe
and run greedy on

the pruned instance.

That is to say, for any active edge
e = (u, v), if both u and v is not matched,

it will select it with probability f(xe)
xe

.
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=
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Pr[(u, z) matched before t | tv = t]︸ ︷︷ ︸
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Conclusion
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1
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Thank you!


