Random Order Vertex Arrival Contention Resolution Schemes For Matching, With Applications

Hu Fu¹, Zhihao Gavin Tang¹, **Hongxun Wu**², Jinzhao Wu³, and Qianfan Zhang²

¹ITCS, Shanghai University of Finance and Economics

²IIIS, Tsinghua University

³Peking University

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Query-Commit MWBM

Chen, Immorlica, Karlin, Mahdian, and Rudra [CIKMR09] first considered the matching problem in query-commit model.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Query-Commit MWBM

For each edge e there is a tuple (w_e, p_e) . Each edge e independently exists with probability p_e and has weight w_e .

- 日本 本語 本 本 田 本 王 本 田 本

 $\mathsf{Utility} = 10$

Query-Commit MWBM

For each edge e there is a tuple (w_e, p_e) . Each edge e independently exists with probability p_e and has weight w_e .

 $\mathsf{Utility} = 10$

Query-Commit MWBM

For each edge e there is a tuple (w_e, p_e) . Each edge e independently exists with probability p_e and has weight w_e .

(日) (四) (日) (日) (日)

 $\mathsf{Utility} = 10 + 6$

Query-Commit MWBM

For each edge e there is a tuple (w_e, p_e) . Each edge e independently exists with probability p_e and has weight w_e .

Utility = 10 + 6 + 4 = 20

(日) (四) (日) (日) (日)

Pol MWBM

Singla [Singla17] introduced the price-of-information model.

Pol MWBM

For each edge e there is a tuple (\mathcal{D}_e, π_e) . The weight of edge e follows from distribution \mathcal{D}_e and we can query it by paying cost π_e .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Total cost = 2

Pol MWBM

For each edge e there is a tuple (\mathcal{D}_e, π_e) . The weight of edge e follows from distribution \mathcal{D}_e and we can query it by paying cost π_e .

イロト 不得 トイヨト イヨト

э

Total cost = 2 + 1

Pol MWBM

For each edge e there is a tuple (\mathcal{D}_e, π_e) . The weight of edge e follows from distribution \mathcal{D}_e and we can query it by paying cost π_e .

イロト 不得 トイヨト イヨト

3

Total cost = 2 + 1 + 3 = 6

Pol MWBM

For each edge e there is a tuple (\mathcal{D}_e, π_e) . The weight of edge e follows from distribution \mathcal{D}_e and we can query it by paying cost π_e .

(日) (四) (日) (日) (日)

Total cost = 2 + 1 + 3 = 6Max weight = 5.5 + 6.2 = 11.7

Pol MWBM

For each edge e there is a tuple (\mathcal{D}_e, π_e) . The weight of edge e follows from distribution \mathcal{D}_e and we can query it by paying cost π_e .

Total cost = 2 + 1 + 3 = 6Max weight = 5.5 + 6.2 = 11.7Utility = Max weight - Total cost = 5.7

Stochastic Matching

The paper by Gamlath, Kale, and Svensson proved the following result.

Theorem ([GKS19])

For <u>bipartite graphs</u>, there is a $1 - \frac{1}{e} \approx 0.632$ -approximation algorithm for maximum weight matching in query-commit (and price of information) model.

Stochastic Matching

The paper by Gamlath, Kale, and Svensson proved the following result.

Theorem ([GKS19])

For <u>bipartite graphs</u>, there is a $1 - \frac{1}{e} \approx 0.632$ -approximation algorithm for maximum weight matching in query-commit (and price of information) model.

Theorem (Our result)

For <u>general graphs</u>, there is a $\frac{8}{15} \approx 0.533$ -approximation algorithm for maximum weight matching in query-commit (and price of information) model.

LP Relaxation for Bipartite Matching

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Our Observation

Our Observation

(Random) Contention Resolution Schemes

Given a set [n] of elements:

- ▶ *i* is active independently with probability x_i where $\sum_{i \in [n]} x_i \leq 1$.
- (Elements arrive one by one in a random order.)
- We can select at most one element (which must be active). A CRS is called α -selectable if $\Pr[i \text{ selected } | i \text{ active}] \ge \alpha$ for all *i*.

0.5

0.6

2

5

where $f(F) = 1 - \prod_{e \in F} (1 - p_e)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\begin{split} f(F) &= 1 - 0.5 \times 0.8 \times 0.7 \qquad x_e \geq 0 \qquad &\forall e \in E \\ x_{(1,2)} + x_{(1,3)} + x_{(1,4)} \leq f(F) \text{ where } f(F) &= 1 - \prod_{e \in F} (1 - p_e). \end{split}$$

Lemma ([GSK19])

For any vertex $v \in A$, there exists a distribution D^v over permutations of $\delta(v)$ such that:

Sample σ ~ D_v. Each edge e is the first edge that exists in σ with probability exactly x^{*}_e.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

RCRS

- ► For each vertex v ∈ A, it activates the first e_i that exists.
 - Each edge is activated exactly with probability x^{*}_e.

RCRS

- ► For each vertex v ∈ A, it activates the first e_i that exists.
 - Each edge is activated exactly with probability x^{*}_e.

RCRS

- For each vertex v ∈ A, it activates the first e_i that exists.
 - Each edge is activated exactly with probability x^{*}_e.
- ► For each vertex v' ∈ B, multiple edges may be active.
 - We sample a random order of all vertices in A and pick one by RCRS.

$$\sum_{e \in \delta(u)} x_e^* \le 1 \quad \forall u \in B$$

RCRS

- ► For each vertex v ∈ A, it activates the first e_i that exists.
 - Each edge is activated exactly with probability x_e^* .
- ► For each vertex v' ∈ B, multiple edges may be active.
 - We sample a random order of all vertices in A and pick one by RCRS.

$$\sum_{e \in \delta(u)} x_e^* \le 1 \quad \forall u \in B$$

LP Relaxation

$$\begin{split} \max \sum_{e \in E} x_e \cdot w(e) \\ s.t. \sum_{e \in F} x_e &\leq f(F) \quad \forall v \in V, F \subseteq \delta(v) \\ x_e &\geq 0 \qquad \qquad \forall e \in E \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

where $f(F) = 1 - \prod_{e \in F} (1 - p_e)$.

Generalize RCRS

We sample a random arrival order of all vertices. Let $\delta'(v)$ be the edges to vertices that arrives before v.

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Generalize RCRS

We sample a random arrival order of all vertices. Let $\delta'(v)$ be the edges to vertices that arrives before v.

Lemma

For any vertex $v \in V$, there exists a distribution D^v over permutations of $\delta'(v)$ such that

Sample σ ~ D_v. Each edge e is the first edge that exists in σ with probability exactly x^{*}_e.

(日) (四) (日) (日) (日)

Generalize RCRS

We sample a random arrival order of all vertices. Let $\delta'(v)$ be the edges to vertices that arrives before v.

Lemma

For any vertex $v \in V$, there exists a distribution D^v over permutations of $\delta'(v)$ such that

Sample σ ~ D_v. Each edge e is the first edge that exists in σ with probability exactly x^{*}_e.

Generalize RCRS

We sample a random arrival order of all vertices. Let $\delta'(v)$ be the edges to vertices that arrives before v.

Lemma

For any vertex $v \in V$, there exists a distribution D^v over permutations of $\delta'(v)$ such that

Sample σ ~ D_v. Each edge e is the first edge that exists in σ with probability exactly x^{*}_e.

Given a graph G = (V, E, x) satisfying $\sum_{e \in \delta(u)} x_e \leq 1$ for each $u \in V$, all vertices of G arrive online in a uniformly random order.

Upon the arrival of a vertex v, at most one edge e connecting v and an arrived vertex is *active* w.p. x_e .

Given a graph G = (V, E, x) satisfying $\sum_{e \in \delta(u)} x_e \leq 1$ for each $u \in V$, all vertices of G arrive online in a uniformly random order.

Upon the arrival of a vertex v, at most one edge e connecting v and an arrived vertex is *active* w.p. x_e .

Given a graph G = (V, E, x) satisfying $\sum_{e \in \delta(u)} x_e \leq 1$ for each $u \in V$, all vertices of G arrive online in a uniformly random order.

Upon the arrival of a vertex v, at most one edge e connecting v and an arrived vertex is *active* w.p. x_e .

4

Given a graph G = (V, E, x) satisfying $\sum_{e \in \delta(u)} x_e \leq 1$ for each $u \in V$, all vertices of G arrive online in a uniformly random order.

Upon the arrival of a vertex v, at most one edge e connecting v and an arrived vertex is *active* w.p. x_e .

Given a graph G = (V, E, x) satisfying $\sum_{e \in \delta(u)} x_e \leq 1$ for each $u \in V$, all vertices of G arrive online in a uniformly random order.

Upon the arrival of a vertex v, at most one edge e connecting v and an arrived vertex is *active* w.p. x_e .

The scheme must irrevocably decide whether to select the active edge (if any exists), upon the arrival of each vertex.

A vertex arrival RCRS is *c*-selectable if $\Pr[e \text{ is selected } | e \text{ is active}] \ge c$ for every $e \in E$.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Our Algorithm

Our algorithm briefly consists of three steps:

- Add dummy vertices and edges to the graph so that the resulting graph is 1-regular, i.e. ∑_{(u,v)∈E} x_{u,v} = 1 for every u ∈ V.
- ▶ Prune each edge from x_e to $w_e = f(x_e) \stackrel{\text{def}}{=} \frac{3x_e}{3+2x_e}.$
- Run greedy on the pruned instance.

Our Algorithm

Add dummy vertices

We can make the graph 1-regular, i.e. $\sum_{(u,v)\in E'} x_{u,v} = 1 \text{ for every } u \in V' \text{, by}$ adding at most |V| dummy vertices.

イロト イヨト イヨト

Our Algorithm

Prune and Greedy

We then prune each edge from x_e to $w_e = f(x_e) \stackrel{\text{def}}{=} \frac{3x_e}{3+2x_e}$ and run greedy on the pruned instance.

That is to say, for any active edge e = (u, v), if both u and v is not matched, it will select it with probability $\frac{f(x_e)}{x_e}$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ →

We want to lower bound

$$\begin{aligned} &\Pr[v \to u \mid t_v = t] \\ &= f(x_{uv}) \cdot \Pr[t_u \leq t, u \text{ unmatched } @t \mid t_v = t] \\ &= f(x_{uv}) \cdot (t - \Pr[u \text{ matched } @t \mid t_v = t]) \end{aligned}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

We want to lower bound

A direct analysis

$$\sum_{z \neq u,v} \Pr[(u,z) \text{ matched before } t \mid t_v = t] \leq \sum_{z \neq u,v} t^2 f(x_{uz}) \leq t^2$$

We want to lower bound

$$\Pr[v \to u \mid t_v = t]$$

$$= f(x_{uv}) \cdot \Pr[t_u \le t, u \text{ unmatched } @t \mid t_v = t]$$

$$= f(x_{uv}) \cdot (t - \Pr[u \text{ matched } @t \mid t_v = t])$$
where
$$t \xrightarrow{u \quad v} \qquad \Pr[u \text{ matched } @t \mid t_v = t]$$

$$= \sum_{z \neq u, v} \underbrace{\Pr[(u, z) \text{ matched before } t \mid t_v = t]}_{\text{upper bound}}$$

Recursive analysis

$$\begin{aligned} &\Pr[(u,z) \text{ matched before } t \mid t_v = t] \\ &= \int_0^t \Big(\Pr[u \to z \mid t_u = s, t_v = t] + \Pr[z \to u \mid t_z = s, t_v = t] \Big) \mathrm{d}s \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We want to lower bound

Recursive analysis

$$\begin{aligned} &\Pr[(u,z) \text{ matched before } t \mid t_v = t] \\ &= \int_0^t \Big(\Pr[u \to z \mid t_u = s, t_v = t] + \Pr[z \to u \mid t_z = s, t_v = t] \Big) \mathrm{d}s \end{aligned}$$

t

We want to lower bound

$$\Pr[v \to u \mid t_v = t]$$

$$= f(x_{uv}) \cdot \Pr[t_u \leq t, u \text{ unmatched } @t \mid t_v = t]$$

$$= f(x_{uv}) \cdot (t - \Pr[u \text{ matched } @t \mid t_v = t])$$
where
$$\Pr[u \text{ matched } @t \mid t_v = t]$$

$$= \sum_{z \neq u, v} \Pr[(u, z) \text{ matched before } t \mid t_v = t]$$
upper bound

Recursive analysis

$$\begin{aligned} &\Pr[(u,z) \text{ matched before } t \mid t_v = t] \\ &= \int_0^t \Big(\Pr[u \to z \mid t_u = s, t_v = t] + \Pr[z \to u \mid t_z = s, t_v = t] \Big) \mathrm{d}s \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q @

We want to lower bound

Recursive analysis

$$\begin{aligned} &\Pr[(u,z) \text{ matched before } t \mid t_v = t] \\ &= \int_0^t \Big(\Pr[u \to z \mid t_u = s, t_v = t] + \Pr[z \to u \mid t_z = s, t_v = t] \Big) \mathrm{d}s \end{aligned}$$

Need an upper bound rather than a lower bound.

We want to lower bound

Recursive analysis

$$\begin{aligned} &\Pr[(u,z) \text{ matched before } t \mid t_v = t] \\ &= \int_0^t \Big(\Pr[u \to z \mid t_u = s, t_v = t] + \Pr[z \to u \mid t_z = s, t_v = t] \Big) \mathrm{d}s \end{aligned}$$

Need an upper bound rather than a lower bound. **1-regularity!**

Conclusion

Theorem (Our result)

For <u>general graphs</u>, there is a $\frac{8}{15} \approx 0.533$ -approximation algorithm for maximum weight matching in query-commit (and price of information) model.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conclusion

Theorem (Our result)

For <u>general graphs</u>, there is a $\frac{8}{15} \approx 0.533$ -approximation algorithm for maximum weight matching in query-commit (and price of information) model.

▶ There is no vertex arrival RCRS for matching better than $\frac{1}{2} + \frac{1}{2e^2} \approx 0.567$ -selectable.

Conclusion

Theorem (Our result)

For <u>general graphs</u>, there is a $\frac{8}{15} \approx 0.533$ -approximation algorithm for maximum weight matching in query-commit (and price of information) model.

▶ There is no vertex arrival RCRS for matching better than $\frac{1}{2} + \frac{1}{2e^2} \approx 0.567$ -selectable.

• One interesting open problem is to close the gap here.

Thank you!

(ロ)、(型)、(E)、(E)、 E) の(()