
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Near-optimal Algorithm for Constructing Greedy
Consensus Tree

Hongxun Wu

Institute for Interdisciplinary Information Sciences, Tsinghua University



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Phylogenetic tree

▶ Phylogenetic tree
represents evolutionary
relations.

▶ Leaves of the tree represent
species.

▶ Each inner node represents
the least common ancestor
of all leaves in its subtree.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Phylogenetic tree

▶ Phylogenetic tree
represents evolutionary
relations.

▶ Leaves of the tree represent
species.

▶ Each inner node represents
the least common ancestor
of all leaves in its subtree.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Phylogenetic tree

▶ Phylogenetic tree
represents evolutionary
relations.

▶ Leaves of the tree represent
species.

▶ Each inner node represents
the least common ancestor
of all leaves in its subtree.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Phylogenetic tree

Figure: Phylogenetic Tree of Covid-191

1Genomic epidemiology of novel coronavirus. 2020. url:
https://nextstrain.org/ncov/global.

https://nextstrain.org/ncov/global


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Consensus tree

▶ Phylogenetic trees from
different sources may
conflicts

▶ Consensus tree summarizes
their structures to a single
tree.

▶ Let k be the number of
phylogenetic trees in the
input and n be the number
of species in each of them.

▶ The input size is Θ(kn).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Consensus tree

▶ Phylogenetic trees from
different sources may
conflicts

▶ Consensus tree summarizes
their structures to a single
tree.

▶ Let k be the number of
phylogenetic trees in the
input and n be the number
of species in each of them.

▶ The input size is Θ(kn).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Consensus tree

▶ Phylogenetic trees from
different sources may
conflicts

▶ Consensus tree summarizes
their structures to a single
tree.

▶ Let k be the number of
phylogenetic trees in the
input and n be the number
of species in each of them.

▶ The input size is Θ(kn).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Consensus tree

▶ Phylogenetic trees from
different sources may
conflicts

▶ Consensus tree summarizes
their structures to a single
tree.

▶ Let k be the number of
phylogenetic trees in the
input and n be the number
of species in each of them.

▶ The input size is Θ(kn).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Consensus tree

▶ Many consensus tree methods were proposed.

Consensus tree method Running time
Adam’s consensus tree O(kn log n)
Strict consensus tree O(kn)
Loose consensus tree O(kn)

Frequency difference consensus tree O(kn log2 n)
Majority-rule consensus tree O(kn log k), Randomized O(kn)

Majority-rule (+) consensus tree O(kn)
Local consensus tree O(kn3)
R∗ consensus tree O(n2 logk+2 n)

Greedy consensus tree O(kn1.5), O(k2n)

▶ Most of them have near-optimal running time. Greedy
consensus tree is one of the exceptions.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Consensus tree

▶ Many consensus tree methods were proposed.

Consensus tree method Running time
Adam’s consensus tree O(kn log n)
Strict consensus tree O(kn)
Loose consensus tree O(kn)

Frequency difference consensus tree O(kn log2 n)
Majority-rule consensus tree O(kn log k), Randomized O(kn)

Majority-rule (+) consensus tree O(kn)
Local consensus tree O(kn3)
R∗ consensus tree O(n2 logk+2 n)

Greedy consensus tree O(kn1.5), O(k2n)
▶ Most of them have near-optimal running time. Greedy

consensus tree is one of the exceptions.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Greedy Consensus Tree

▶ Input: k phylogenetic trees
▶ Output: One consensus tree

▶ A cluster L(v) is the set of
all leaves in the subtree of
an inner node v.

▶ A cluster may appear in
several input phylogenetic
trees.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Greedy Consensus Tree

▶ Input: k phylogenetic trees
▶ Output: One consensus tree
▶ A cluster L(v) is the set of

all leaves in the subtree of
an inner node v.

▶ A cluster may appear in
several input phylogenetic
trees.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Greedy Consensus Tree

▶ Input: k phylogenetic trees
▶ Output: One consensus tree
▶ A cluster L(v) is the set of

all leaves in the subtree of
an inner node v.

▶ A cluster may appear in
several input phylogenetic
trees.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Greedy Consensus Tree

▶ Input: k phylogenetic trees
▶ Output: One consensus tree
▶ A cluster L(v) is the set of

all leaves in the subtree of
an inner node v.

▶ A cluster may appear in
several input phylogenetic
trees.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Greedy Consensus Tree

▶ Input: k phylogenetic trees
▶ Output: One consensus tree
▶ A cluster L(v) is the set of

all leaves in the subtree of
an inner node v.

▶ A cluster may appear in
several input phylogenetic
trees.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Greedy Consensus Tree

▶ Input: k phylogenetic trees
▶ Output: One consensus tree
▶ A cluster L(v) is the set of

all leaves in the subtree of
an inner node v.

▶ A cluster may appear in
several input phylogenetic
trees.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Greedy Consensus Tree

▶ Input: k phylogenetic trees
▶ Output: One consensus tree
▶ A cluster L(v) is the set of

all leaves in the subtree of
an inner node v.

▶ A cluster may appear in
several input phylogenetic
trees.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Greedy Consensus Tree

▶ Input: k phylogenetic trees
▶ Output: One consensus tree
▶ A cluster L(v) is the set of

all leaves in the subtree of
an inner node v.

▶ A cluster may appear in
several input phylogenetic
trees.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Greedy Consensus Tree

▶ Input: k phylogenetic trees
▶ Output: One consensus tree
▶ A cluster L(v) is the set of

all leaves in the subtree of
an inner node v.

▶ A cluster may appear in
several input phylogenetic
trees.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Greedy Consensus Tree

▶ Two clusters are consistent
if and only if one of the
following holds:

▶ They are disjoint.
▶ One contains the other.

▶ In other words, they can
simultaneously occur in a
valid phylogenetic tree.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Greedy Consensus Tree

▶ Two clusters are consistent
if and only if one of the
following holds:

▶ They are disjoint.
▶ One contains the other.

▶ In other words, they can
simultaneously occur in a
valid phylogenetic tree.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Greedy Consensus Tree

▶ Two clusters are consistent
if and only if one of the
following holds:

▶ They are disjoint.
▶ One contains the other.

▶ In other words, they can
simultaneously occur in a
valid phylogenetic tree.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Greedy Consensus Tree

▶ Two clusters are consistent
if and only if one of the
following holds:

▶ They are disjoint.
▶ One contains the other.

▶ In other words, they can
simultaneously occur in a
valid phylogenetic tree.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Greedy Consensus Tree

▶ A greedy consensus tree is
defined as the output of
following greedy algorithm:

1. First, count the frequency
of each cluster in the
input trees.

2. Second, try to insert each
cluster into our consensus
tree one by one from high
frequency to low
frequency (ties are broken
arbitrarily).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Greedy Consensus Tree

▶ A greedy consensus tree is
defined as the output of
following greedy algorithm:

1. First, count the frequency
of each cluster in the
input trees.

2. Second, try to insert each
cluster into our consensus
tree one by one from high
frequency to low
frequency (ties are broken
arbitrarily).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Greedy Consensus Tree

▶ A greedy consensus tree is
defined as the output of
following greedy algorithm:

1. First, count the frequency
of each cluster in the
input trees.

2. Second, try to insert each
cluster into our consensus
tree one by one from high
frequency to low
frequency (ties are broken
arbitrarily).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Greedy Consensus Tree

▶ A greedy consensus tree is
defined as the output of
following greedy algorithm:

1. First, count the frequency
of each cluster in the
input trees.

2. Second, try to insert each
cluster into our consensus
tree one by one from high
frequency to low
frequency (ties are broken
arbitrarily).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Greedy Consensus Tree

▶ A greedy consensus tree is
defined as the output of
following greedy algorithm:

1. First, count the frequency
of each cluster in the
input trees.

2. Second, try to insert each
cluster into our consensus
tree one by one from high
frequency to low
frequency (ties are broken
arbitrarily).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Greedy Consensus Tree

▶ A greedy consensus tree is
defined as the output of
following greedy algorithm:

1. First, count the frequency
of each cluster in the
input trees.

2. Second, try to insert each
cluster into our consensus
tree one by one from high
frequency to low
frequency (ties are broken
arbitrarily).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Previous Works

▶ Jesper Jansson, Chuanqi Shen, Wing-Kin Sung. SODA 2013

▶ Pawel Gawrychowski, Gad M. Landau, Wing-Kin Sung, Oren
Weimann. ICALP 2018

▶ Wing-Kin Sung. WALCOM 2019



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Previous Works

▶ Jesper Jansson, Chuanqi Shen, Wing-Kin Sung. SODA 2013
▶ Pawel Gawrychowski, Gad M. Landau, Wing-Kin Sung, Oren

Weimann. ICALP 2018

▶ Wing-Kin Sung. WALCOM 2019



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Previous Works

▶ Jesper Jansson, Chuanqi Shen, Wing-Kin Sung. SODA 2013
▶ Pawel Gawrychowski, Gad M. Landau, Wing-Kin Sung, Oren

Weimann. ICALP 2018
▶ Wing-Kin Sung. WALCOM 2019



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Previous Works

▶ Jesper Jansson, Chuanqi Shen, Wing-Kin Sung. SODA 2013
▶ Pawel Gawrychowski, Gad M. Landau, Wing-Kin Sung, Oren

Weimann. ICALP 2018
▶ Wing-Kin Sung. WALCOM 2019



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Characterization of consistency

▶ Recall greedy consensus tree construction has two steps:

▶ Count the frequency of each cluster and sort them.
▶ Insert each cluster into consensus tree if they are consistent.

▶ Handle first part within Õ(kn) time is simple.
▶ The hard part is to determine whether each cluster is

consistent with our current consensus tree.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Characterization of consistency

▶ Recall greedy consensus tree construction has two steps:
▶ Count the frequency of each cluster and sort them.

▶ Insert each cluster into consensus tree if they are consistent.
▶ Handle first part within Õ(kn) time is simple.
▶ The hard part is to determine whether each cluster is

consistent with our current consensus tree.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Characterization of consistency

▶ Recall greedy consensus tree construction has two steps:
▶ Count the frequency of each cluster and sort them.
▶ Insert each cluster into consensus tree if they are consistent.

▶ Handle first part within Õ(kn) time is simple.
▶ The hard part is to determine whether each cluster is

consistent with our current consensus tree.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Characterization of consistency

▶ Recall greedy consensus tree construction has two steps:
▶ Count the frequency of each cluster and sort them.
▶ Insert each cluster into consensus tree if they are consistent.

▶ Handle first part within Õ(kn) time is simple.

▶ The hard part is to determine whether each cluster is
consistent with our current consensus tree.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Characterization of consistency

▶ Recall greedy consensus tree construction has two steps:
▶ Count the frequency of each cluster and sort them.
▶ Insert each cluster into consensus tree if they are consistent.

▶ Handle first part within Õ(kn) time is simple.
▶ The hard part is to determine whether each cluster is

consistent with our current consensus tree.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Characterization of consistency

Lemma
Let v be the LCA of cluster C on consensus tree

and w be a child
of v. L(w) is defined as the cluster of all species in its subtree.
C is consistent with the consensus tree if and only if it is the union
of several such L(w).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Characterization of consistency

Lemma
Let v be the LCA of cluster C on consensus tree

and w be a child
of v. L(w) is defined as the cluster of all species in its subtree.
C is consistent with the consensus tree if and only if it is the union
of several such L(w).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Characterization of consistency

Lemma
Let v be the LCA of cluster C on consensus tree

and w be a child
of v. L(w) is defined as the cluster of all species in its subtree.
C is consistent with the consensus tree if and only if it is the union
of several such L(w).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Characterization of consistency

Lemma
Let v be the LCA of cluster C on consensus tree and w be a child
of v.

L(w) is defined as the cluster of all species in its subtree.
C is consistent with the consensus tree if and only if it is the union
of several such L(w).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Characterization of consistency

Lemma
Let v be the LCA of cluster C on consensus tree and w be a child
of v. L(w) is defined as the cluster of all species in its subtree.

C is consistent with the consensus tree if and only if it is the union
of several such L(w).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Characterization of consistency
Lemma
Let v be the LCA of cluster C on consensus tree and w be a child
of v. L(w) is defined as the cluster of all species in its subtree.
C is consistent with the consensus tree if and only if it is the union
of several such L(w).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Characterization of consistency
Lemma
Let v be the LCA of cluster C on consensus tree and w be a child
of v. L(w) is defined as the cluster of all species in its subtree.
C is consistent with the consensus tree if and only if it is the union
of several such L(w).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Characterization of consistency
Lemma
Let v be the LCA of cluster C on consensus tree and w be a child
of v. L(w) is defined as the cluster of all species in its subtree.
C is consistent with the consensus tree if and only if it is the union
of several such L(w).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Implementing the characterization

▶ To use it, we need to implement the following steps:

1. Query the LCA of a new cluster to check the consistency.
2. If consistent, insert a new node to the consensus tree.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Implementing the characterization

▶ To use it, we need to implement the following steps:
1. Query the LCA of a new cluster to check the consistency.

2. If consistent, insert a new node to the consensus tree.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Implementing the characterization

▶ To use it, we need to implement the following steps:
1. Query the LCA of a new cluster to check the consistency.
2. If consistent, insert a new node to the consensus tree.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Main difficulty
▶ Main difficulty: maintaining LCA of kn static sets on a

dynamic tree is hard.

▶ Our Approach: How about maintaining LCAs of clusters in
the dynamic tree on k static trees.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Main difficulty
▶ Main difficulty: maintaining LCA of kn static sets on a

dynamic tree is hard.

▶ Our Approach: How about maintaining LCAs of clusters in
the dynamic tree on k static trees.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Main difficulty
▶ Main difficulty: maintaining LCA of kn static sets on a

dynamic tree is hard.

▶ Our Approach: How about maintaining LCAs of clusters in
the dynamic tree on k static trees.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Main difficulty
▶ Main difficulty: maintaining LCA of kn static sets on a

dynamic tree is hard.

▶ Our Approach: How about maintaining LCAs of clusters in
the dynamic tree on k static trees.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Modified Characterization

Lemma
Let v be the LCA of cluster C on consensus tree and w be a child
of v. L(w) is defined as the cluster of all species in its subtree.
C is consistent with the consensus tree if and only if it is the union
of several such L(w).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Modified Characterization
Lemma
Let v be the LCA of cluster C on consensus tree and w be a child
of v. L(w) is defined as the cluster of all species in its subtree.
C is consistent with the consensus tree if and only if it is the union
of several such L(w).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Modified Characterization
Lemma
Let v be the deepest ancestor of a leaf x0 ∈ C s.t. L(v) ̸⊆ C and w
be a child of v. L(w) is defined as the cluster of all species in its
subtree.
C is consistent with the consensus tree if and only if it is the union
of several such L(w).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Modified Characterization
Lemma
Let v be the deepest ancestor of a leaf x0 ∈ C s.t. L(v) ̸⊆ C and w
be a child of v. L(w) is defined as the cluster of all species in its
subtree.
C is consistent with the consensus tree if and only if it is the union
of several such L(w).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Modified Characterization
Lemma
Let v be the deepest ancestor of a leaf x0 ∈ C s.t. L(v) ̸⊆ C and w
be a child of v. L(w) is defined as the cluster of all species in its
subtree.
C is consistent with the consensus tree if and only if it is the union
of several such L(w).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Modified Characterization
Lemma
Let v be the deepest ancestor of a leaf x0 ∈ C s.t. L(v) ̸⊆ C and w
be a child of v. L(w) is defined as the cluster of all species in its
subtree.
C is consistent with the consensus tree if and only if it is the union
of several such L(w).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Modified Characterization

Fact
Suppose C is L(u) of inner node u on input phylogenetic tree Ti.

L(v) ⊆ C if and only if the lca of L(v) on Ti is in the subtree of u.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Modified Characterization

Fact
Suppose C is L(u) of inner node u on input phylogenetic tree Ti.
L(v) ⊆ C if and only if the lca of L(v) on Ti

is in the subtree of u.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Modified Characterization

Fact
Suppose C is L(u) of inner node u on input phylogenetic tree Ti.
L(v) ⊆ C if and only if the lca of L(v) on Ti is in the subtree of u.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Modified Characterization

Lemma
Let v be the deepest ancestor of a leaf x0 ∈ C s.t. L(v) ̸⊆ C and w
be a child of v. L(w) is defined as the cluster of all species in its
subtree.
C is consistent with the consensus tree if and only if it is the union
of several such L(w).

▶ To find deepest such ancestor we can binary search the path
from x0 to root.

▶ As a result, the modified characterization can be implemented
by maintaining LCAs of clusters in the dynamic tree on k
static trees.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Modified Characterization

Lemma
Let v be the deepest ancestor of a leaf x0 ∈ C s.t. L(v) ̸⊆ C and w
be a child of v. L(w) is defined as the cluster of all species in its
subtree.
C is consistent with the consensus tree if and only if it is the union
of several such L(w).

▶ To find deepest such ancestor we can binary search the path
from x0 to root.

▶ As a result, the modified characterization can be implemented
by maintaining LCAs of clusters in the dynamic tree on k
static trees.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

BST
▶ Given a dynamic set S of

nodes on static tree Ti, how
do we support dynamic
addition, deletion, and query
LCA(S)?

▶ Every node in the BST
corresponds to a node in S.

▶ At each node, we maintain
the LCA of all nodes in its
subtree on BST.

▶ This LCA can be
computed from the two
LCAs maintained at its
children.

▶ When the children of a node
changes, we recompute the
LCA of its two children.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

BST
▶ Given a dynamic set S of

nodes on static tree Ti, how
do we support dynamic
addition, deletion, and query
LCA(S)?

▶ Every node in the BST
corresponds to a node in S.

▶ At each node, we maintain
the LCA of all nodes in its
subtree on BST.

▶ This LCA can be
computed from the two
LCAs maintained at its
children.

▶ When the children of a node
changes, we recompute the
LCA of its two children.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

BST
▶ Given a dynamic set S of

nodes on static tree Ti, how
do we support dynamic
addition, deletion, and query
LCA(S)?

▶ Every node in the BST
corresponds to a node in S.

▶ At each node, we maintain
the LCA of all nodes in its
subtree on BST.

▶ This LCA can be
computed from the two
LCAs maintained at its
children.

▶ When the children of a node
changes, we recompute the
LCA of its two children.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

BST
▶ Given a dynamic set S of

nodes on static tree Ti, how
do we support dynamic
addition, deletion, and query
LCA(S)?

▶ Every node in the BST
corresponds to a node in S.

▶ At each node, we maintain
the LCA of all nodes in its
subtree on BST.

▶ This LCA can be
computed from the two
LCAs maintained at its
children.

▶ When the children of a node
changes, we recompute the
LCA of its two children.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

BST
▶ Given a dynamic set S of

nodes on static tree Ti, how
do we support dynamic
addition, deletion, and query
LCA(S)?

▶ Every node in the BST
corresponds to a node in S.

▶ At each node, we maintain
the LCA of all nodes in its
subtree on BST.

▶ This LCA can be
computed from the two
LCAs maintained at its
children.

▶ When the children of a node
changes, we recompute the
LCA of its two children.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Dynamic Tree + BST
▶ We use an arbitrary dynamic tree to maintain the consensus

tree.

▶ At the node v of the consensus tree, for each input tree Ti,
we maintain a BST and the LCA of L(v).

▶ Each node of the BST is the LCA of one of its children.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Dynamic Tree + BST
▶ We use an arbitrary dynamic tree to maintain the consensus

tree.
▶ At the node v of the consensus tree, for each input tree Ti,

we maintain a BST and the LCA of L(v).

▶ Each node of the BST is the LCA of one of its children.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Dynamic Tree + BST
▶ We use an arbitrary dynamic tree to maintain the consensus

tree.
▶ At the node v of the consensus tree, for each input tree Ti,

we maintain a BST and the LCA of L(v).
▶ Each node of the BST is the LCA of one of its children.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Insert a new node
▶ While inserting a new node,

we split the BST at its
parent by deletions.

▶ If most of the children
remain

▶ Delete those children in
the BST.

▶ If most of the children go to
the new node

▶ Delete the other children
in the BST,

▶ Give the BST to our new
node.

▶ Since we always enumerate
the smaller part, in total
O(kn log n) deletions in
BSTs.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Insert a new node
▶ While inserting a new node,

we split the BST at its
parent by deletions.

▶ If most of the children
remain

▶ Delete those children in
the BST.

▶ If most of the children go to
the new node

▶ Delete the other children
in the BST,

▶ Give the BST to our new
node.

▶ Since we always enumerate
the smaller part, in total
O(kn log n) deletions in
BSTs.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Insert a new node
▶ While inserting a new node,

we split the BST at its
parent by deletions.

▶ If most of the children
remain

▶ Delete those children in
the BST.

▶ If most of the children go to
the new node

▶ Delete the other children
in the BST,

▶ Give the BST to our new
node.

▶ Since we always enumerate
the smaller part, in total
O(kn log n) deletions in
BSTs.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Insert a new node
▶ While inserting a new node,

we split the BST at its
parent by deletions.

▶ If most of the children
remain

▶ Delete those children in
the BST.

▶ If most of the children go to
the new node

▶ Delete the other children
in the BST,

▶ Give the BST to our new
node.

▶ Since we always enumerate
the smaller part, in total
O(kn log n) deletions in
BSTs.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Insert a new node
▶ While inserting a new node,

we split the BST at its
parent by deletions.

▶ If most of the children
remain

▶ Delete those children in
the BST.

▶ If most of the children go to
the new node

▶ Delete the other children
in the BST,

▶ Give the BST to our new
node.

▶ Since we always enumerate
the smaller part, in total
O(kn log n) deletions in
BSTs.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Insert a new node
▶ While inserting a new node,

we split the BST at its
parent by deletions.

▶ If most of the children
remain

▶ Delete those children in
the BST.

▶ If most of the children go to
the new node

▶ Delete the other children
in the BST,

▶ Give the BST to our new
node.

▶ Since we always enumerate
the smaller part, in total
O(kn log n) deletions in
BSTs.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Insert a new node
▶ While inserting a new node,

we split the BST at its
parent by deletions.

▶ If most of the children
remain

▶ Delete those children in
the BST.

▶ If most of the children go to
the new node

▶ Delete the other children
in the BST,

▶ Give the BST to our new
node.

▶ Since we always enumerate
the smaller part, in total
O(kn log n) deletions in
BSTs.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Q & A

Questions?

Thank you!


	Background
	Previous Approach
	Data Structure

