(Fractional) Online Stochastic Matching via Fine-Grained Offline Statistics

Zhihao Gavin Tang ${ }^{1}$ Hongxun Wu² Jinzhao Wu ${ }^{3}$
${ }^{1}$ ITCS, Shanghai University of Finance and Economics
${ }^{2}$ IIIS, Tsinghua University
${ }^{3}$ CFCS, Peking University

Introduction

Our framework

Algorithms / Analysis

Online Stochastic Matching

[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]
INPUT Bipartite graph $G=(L \cup R, E)$

- Vertices $u \in L$ are offline.
- Vertices $j \in R$ are online.

Online Stochastic Matching

[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]
INPUT Bipartite graph $G=(L \cup R, E)$

- Vertices $u \in L$ are offline.
- Vertices $j \in R$ are online.
- Upon arrival, the set $\mathrm{t}_{\mathrm{j}} \in 2^{L}$ of its neighbors is sampled.
- $t_{j} \sim D_{j}$. Distributions are known upfront.

Online Stochastic Matching

[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]
INPUT Bipartite graph $G=(L \cup R, E)$

- Vertices $u \in L$ are offline.
- Vertices $j \in R$ are online.
- Upon arrival, the set $\mathrm{t}_{\mathrm{j}} \in 2^{L}$ of its neighbors is sampled.
- $t_{j} \sim D_{j}$. Distributions are known upfront.

Online Stochastic Matching

[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]
INPUT Bipartite graph $G=(L \cup R, E)$

- Vertices $u \in L$ are offline.
- Vertices $j \in R$ are online.
- Upon arrival, the set $\mathrm{t}_{\mathrm{j}} \in 2^{L}$ of its neighbors is sampled.
- $t_{j} \sim D_{j}$. Distributions are known upfront.

Online Stochastic Matching

[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]
INPUT Bipartite graph $G=(L \cup R, E)$

- Vertices $u \in L$ are offline.
- Vertices $j \in R$ are online.
- Upon arrival, the set $\mathrm{t}_{\mathrm{j}} \in 2^{L}$ of its neighbors is sampled.
- $t_{j} \sim D_{j}$. Distributions are known upfront.

Online Stochastic Matching

[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]
INPUT Bipartite graph $G=(L \cup R, E)$

- Vertices $u \in L$ are offline.
- Vertices $j \in R$ are online.
- Upon arrival, the set $\mathrm{t}_{\mathrm{j}} \in 2^{L}$ of its neighbors is sampled.
- $t_{j} \sim D_{j}$. Distributions are known upfront.

OUTPUT Algorithm must decide irrevocably matching for $j \in R$.

Online Stochastic Matching

[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]
INPUT Bipartite graph $G=(L \cup R, E)$

- Vertices $u \in L$ are offline.
- Vertices $j \in R$ are online.
- Upon arrival, the set $\mathrm{t}_{\mathrm{j}} \in 2^{L}$ of its neighbors is sampled.
- $t_{j} \sim D_{j}$. Distributions are known upfront.

Goal

- Unweighted: Maximize the cardinality of the matching
- Vertex Weighted: Maximize the total weight of matched $\mathrm{u} \in L$.

Competitive Ratio

Metric The ratio between algorithm and offline optimum.

$$
\mu=\min _{G, D_{1}, D_{2}, \cdots, D_{n}} \frac{\mathrm{E}[\operatorname{ALG}(G)]}{\mathrm{E}[\operatorname{OPT}(G)]}
$$

Previous Works

- IID arrival: Type distributions D_{j} are the same for all $j \in R$.

Arrival	Goal	Ratio	
IID	Unweighted	0.711	[Huang and Shu, 2021]
Non-IID	Vertex-weighted	0.701	Vertex-weighted
		$1-1 / e$ 	

Our Results

- IID arrival: Type distributions D_{j} are the same for all $j \in R$.

Arrival	Goal	Ratio	Ours
IID	Unweighted	0.711	0.704
	Vertex-weighted	0.701	
Non-IID	Vertex-weighted	$1-1 / e$ 	
			0.632

Our Results

- IID arrival: Type distributions D_{j} are the same for all $j \in R$.

Arrival	Goal	Ratio	Ours
IID	Unweighted	0.711	0.704
Non-IID	Vertex-weighted	0.701	
Vertex-weighted	$1-1 / e$ 	≈ 0.632	0.666

Parallel to our work, Huang, Shu, and Yan improved the ratio for IID vertex-weighted setting to 0.716 .

Key Idea

- Warm up: One - Choices Algorithm
- When j arrives, we sample one neighbor of it.
- For each neighbor u,
it is sampled with probability $\operatorname{Pr}\left[(u, j) \in \mathrm{OPT} \mid t_{j}\right]$.

Key Idea

- Warm up: One - Choices Algorithm
- When j arrives, we sample one neighbor of it.
- For each neighbor u,
it is sampled with probability $\operatorname{Pr}\left[(u, j) \in \mathrm{OPT} \mid t_{j}\right]$.
- Then we try to match j with the sampled neighbor.

Key Idea

- Warm up: One - Choices Algorithm
- When j arrives, we sample one neighbor of it.
- For each neighbor u,
it is sampled with probability $\operatorname{Pr}\left[(u, j) \in \mathrm{OPT} \mid t_{j}\right]$.
- Then we try to match j with the sampled neighbor.
- In total, We try each (u, j) with probability $p_{u, j}=\operatorname{Pr}[(u, j) \in$ OPT].

Key Idea

- Warm up: One - Choices Algorithm
- When j arrives, we sample one neighbor of it.
- For each neighbor u,
it is sampled with probability $\operatorname{Pr}\left[(u, j) \in \mathrm{OPT} \mid t_{j}\right]$.
- Then we try to match j with the sampled neighbor.
- In total, We try each (u, j) with probability $p_{u, j}=\operatorname{Pr}[(u, j) \in$ OPT].
- Define $p_{u}:=\sum_{j} p_{u, j}=\operatorname{Pr}[u \in \mathrm{OPT}]$.

Key Idea

- Warm up: One - Choices Algorithm
- When j arrives, we sample one neighbor of it.
- For each neighbor u,
it is sampled with probability $\operatorname{Pr}\left[(u, j) \in \mathrm{OPT} \mid t_{j}\right]$.
- Then we try to match j with the sampled neighbor.
- In total, We try each (u, j) with probability $p_{u, j}=\operatorname{Pr}[(u, j) \in$ OPT].
- Define $p_{u}:=\sum_{j} p_{u, j}=\operatorname{Pr}[u \in$ OPT $]$.
- $\operatorname{Pr}[u \in \mathrm{ALG}]=1-\prod_{j}\left(1-p_{u, j}\right) \geq 1-e^{-p_{u}} \geq\left(1-\frac{1}{e}\right) p_{u}$

Key Idea

- Warm up: One - Choices Algorithm
- Define $p_{u}:=\operatorname{Pr}[u \in \mathrm{OPT}]=\sum_{j} p_{u, j}$.
- $\operatorname{Pr}[u \in \mathrm{ALG}] \geq\left(1-\frac{1}{e}\right) p_{u}$

$$
\begin{aligned}
\mathrm{E}[\mathrm{ALG}] & \geq \sum_{u} w_{u} \cdot \operatorname{Pr}[u \in A L G] \\
& \geq\left(1-\frac{1}{e}\right) \sum_{u} w_{u} p_{u} \\
& =\left(1-\frac{1}{e}\right) \mathrm{E}[\mathrm{OPT}]
\end{aligned}
$$

Key Idea

- Previous approach: Two - Choice Algorithm
[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]
[Manshadi, Gharan, and Saberi, 2012]
[Jaillet and Lu, 2014]
[Brubach, Sankararaman, Srinivasan, and Xu, 2016]
[Huang and Shu, 2021]

Key Idea

- Previous approach: Two - Choice Algorithm
[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]
[Manshadi, Gharan, and Saberi, 2012]
[Jaillet and Lu, 2014]
[Brubach, Sankararaman, Srinivasan, and Xu, 2016]
[Huang and Shu, 2021]

Key Idea

- Previous approach: Two - Choice Algorithm
[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]
[Manshadi, Gharan, and Saberi, 2012]
[Jaillet and Lu, 2014]
[Brubach, Sankararaman, Srinivasan, and Xu, 2016]
[Huang and Shu, 2021]

Key Idea

- Previous approach: Two - Choice Algorithm
[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009] [Manshadi, Gharan, and Saberi, 2012]
[Jaillet and Lu, 2014]
[Brubach, Sankararaman, Srinivasan, and Xu, 2016] [Huang and Shu, 2021]

Key Idea: Multiway Online Selection.
[Gao, He, Huang, Nie, Yuan, and Zhong, 2021]
[Blanc and Charikar, 2021]

Key Idea

- Previous approach: Two - Choice Algorithm
[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]
[Manshadi, Gharan, and Saberi, 2012]
[Jaillet and Lu, 2014]
[Brubach, Sankararaman, Srinivasan, and Xu, 2016] [Huang and Shu, 2021]

Key Idea: Multiway Online Selection.
[Gao, He, Huang, Nie, Yuan, and Zhong, 2021]
[Blanc and Charikar, 2021]
Parallel to our work, Huang, Shu, and Yan also exploit the power of multi-selection.

Introduction

Our framework

Algorithms / Analysis

Fractional Matching

Upon the arrival of each $j \in R$, the algorithm matches it with each $u \in L$ with fraction $y_{u, j}$.

Fractional Matching

Upon the arrival of each $j \in R$, the algorithm matches it with each $u \in L$ with fraction $y_{u, j}$.

Fractional Matching

Upon the arrival of each $j \in R$, the algorithm matches it with each $u \in L$ with fraction $y_{u, j}$.

- $\sum_{u} y_{u, j} \leq 1$.
- $y_{u, j}=0$ if there is no such edge,
i.e. $u \notin t_{j}$

Fractional Matching

Upon the arrival of each $j \in R$, the algorithm matches it with each $u \in L$ with fraction $y_{u, j}$.

- $\sum_{u} y_{u, j} \leq 1$
- $y_{u, j}=0$ if there is no such edge,
i.e. $u \notin t_{j}$

Fractional Matching

Upon the arrival of each $j \in R$, the algorithm matches it with each $u \in L$ with fraction $y_{u, j}$.

Fractional Matching

Upon the arrival of each $j \in R$, the algorithm matches it with each $u \in L$ with fraction $y_{u, j}$.

Independent Rounding

For each $j \in R$, we sample one neighbor and try. Each neighbor u is sampled with probability $y_{u, j}$

Independent Rounding

For each $j \in R$, we sample one neighbor and try. Each neighbor u is sampled with probability $y_{u, j}$

$$
\begin{array}{ccc}
y_{1,1} & 0 & \text { • The weight of matching afterward } \\
\text { is }
\end{array} y_{y_{2,1}} \begin{array}{cc}
y_{2,2} & \sum_{u} w_{u} \cdot\left(1-\prod_{j}\left(1-y_{u, j}\right)\right) \\
0 & y_{3,2}
\end{array}=\sum_{u} w_{u} \cdot\left(1-e^{-y_{u}}\right) .
$$

Rounding with Online Correlated Selection

[Gao, He, Huang, Nie, Yuan, and Zhong, 2021] [Blanc and Charikar, 2021]
For each $j \in R$, we apply OCS with y_{j} as input.

Rounding with Online Correlated Selection

[Gao, He, Huang, Nie, Yuan, and Zhong, 2021] [Blanc and Charikar, 2021]

For each $j \in R$, we apply OCS with y_{j} as input.

Our Framework

Lemma.

Let $y_{u}=\sum_{j} y_{u, j}$. The algorithm would achieve performance

$$
\sum_{u} w_{u} \cdot f\left(y_{u}\right)
$$

where

$$
f=\left\{\begin{array}{l}
\min \left(1, y_{u}\right) \text { for fractional matching } \\
\end{array}\right.
$$

Our Framework

Lemma.

Let $y_{u}=\sum_{j} y_{u, j}$. The algorithm would achieve performance

$$
\sum_{u} w_{u} \cdot f\left(y_{u}\right)
$$

where

$$
f=\left\{\begin{array}{l}
\min \left(1, y_{u}\right) \text { for fractional matching } \\
1-e^{-y_{u}} \text { with independent rounding }
\end{array}\right.
$$

Our Framework

Lemma.

Let $y_{u}=\sum_{j} y_{u, j}$. The algorithm would achieve performance

$$
\sum_{u} w_{u} \cdot f\left(y_{u}\right)
$$

where

$$
f=\left\{\begin{array}{l}
\min \left(1, y_{u}\right) \text { for fractional matching } \\
1-e^{-y_{u}-0.5 y_{u}^{2}-0.18 y_{u}^{3}} \text { with OCS rounding } \\
1-e^{-y_{u}} \text { with independent rounding }
\end{array}\right.
$$

Introduction

Our framework

Algorithms / Analysis

Unbiased Estimators

Example. When apply $y_{u, j}=\operatorname{Pr}\left[(u, j) \in \mathrm{OPT} \mid t_{j}\right]$ and independent sampling, we get exactly one-choice algorithm. (Independent Estimators)

Unbiased Estimators

Example. When apply $y_{u, j}=\operatorname{Pr}\left[(u, j) \in \mathrm{OPT} \mid t_{j}\right]$ and independent sampling, we get exactly one-choice algorithm. (Independent Estimators)

We consider fractional algorithm with unbiased estimators.

Unbiased Estimators

Example. When apply $y_{u, j}=\operatorname{Pr}\left[(u, j) \in \mathrm{OPT} \mid t_{j}\right]$ and independent sampling, we get exactly one-choice algorithm. (Independent Estimators)

We consider fractional algorithm with unbiased estimators.
Estimators $\left\{y_{u, j}\left(t_{1}, t_{2}, \ldots, t_{j}\right)\right\}_{u \in L, j \in R}$ are unbiased if

Unbiased Estimators

Example. When apply $y_{u, j}=\operatorname{Pr}\left[(u, j) \in \mathrm{OPT} \mid t_{j}\right]$ and independent sampling, we get exactly one-choice algorithm. (Independent Estimators)

We consider fractional algorithm with unbiased estimators.
Estimators $\left\{y_{u, j}\left(t_{1}, t_{2}, \ldots, t_{j}\right)\right\}_{u \in L, j \in R}$ are unbiased if

- $\sum_{u} y_{u, j} \leq 1$.

Unbiased Estimators

Example. When apply $y_{u, j}=\operatorname{Pr}\left[(u, j) \in \mathrm{OPT} \mid t_{j}\right]$ and independent sampling, we get exactly one-choice algorithm. (Independent Estimators)

We consider fractional algorithm with unbiased estimators.
Estimators $\left\{y_{u, j}\left(t_{1}, t_{2}, \ldots, t_{j}\right)\right\}_{u \in L, j \in R}$ are unbiased if

- $\sum_{u} y_{u, j} \leq 1$.
- $y_{u, j}=0$ if there is no such edge.

Unbiased Estimators

Example. When apply $y_{u, j}=\operatorname{Pr}\left[(u, j) \in \mathrm{OPT} \mid t_{j}\right]$ and independent sampling, we get exactly one-choice algorithm. (Independent Estimators)

We consider fractional algorithm with unbiased estimators.
Estimators $\left\{y_{u, j}\left(t_{1}, t_{2}, \ldots, t_{j}\right)\right\}_{u \in L, j \in R}$ are unbiased if

- $\sum_{u} y_{u, j} \leq 1$.
- $y_{u, j}=0$ if there is no such edge.
- $y_{u}=\sum_{j} y_{u, j}$ has $\mathrm{E}\left[y_{u}\right]=\operatorname{Pr}[u \in \mathrm{OPT}]$

Main Difficulty

Lemma.

Any unbiased estimators $y_{\mathrm{u}, \mathrm{j}}$ with $\mathrm{E}\left[f\left(y_{u}\right)\right] \geq \mu \cdot \mathrm{E}\left[y_{u}\right]$ implies a μ-competitive algorithm.

Main Difficulty

Lemma.

Any unbiased estimators $y_{\mathrm{u}, \mathrm{j}}$ with $\mathrm{E}\left[f\left(y_{u}\right)\right] \geq \mu \cdot \mathrm{E}\left[y_{u}\right]$ implies a μ-competitive algorithm.

Proof

$$
\begin{aligned}
\mathrm{E}[\mathrm{ALG}]=\mathrm{E}\left[\sum_{u} f\left(y_{u}\right) \cdot w_{u}\right] & \geq \mu \cdot \sum_{u} E\left[y_{u}\right] \cdot w_{u} \\
& =\mu \cdot \sum_{u} \operatorname{Pr}[u \in O P T] \cdot w_{u}=\mu \cdot \mathrm{E}[\mathrm{OPT}]
\end{aligned}
$$

Main Difficulty

Lemma.

Any unbiased estimators $y_{\mathrm{u}, \mathrm{j}}$ with $\mathrm{E}\left[f\left(y_{u}\right)\right] \geq \mu \cdot \mathrm{E}\left[y_{u}\right]$ implies a μ-competitive algorithm.

Main Difficulty.

For example, let $f(y)=\min (1, y)$.

Main Difficulty

Lemma.

Any unbiased estimators $y_{\mathrm{u}, \mathrm{j}}$ with $\mathrm{E}\left[f\left(y_{u}\right)\right] \geq \mu \cdot \mathrm{E}\left[y_{u}\right]$ implies a μ-competitive algorithm.

Main Difficulty.

For example, let $f(y)=\min (1, y)$.
We know $\mathrm{E}\left[y_{u}\right]=\operatorname{Pr}[u \in \mathrm{OPT}] \in[0,1]$.
For any deterministic $y \in[0,1]$, we do have $f(y)=y$.

Main Difficulty

Lemma.

Any unbiased estimators $y_{\mathrm{u}, \mathrm{j}}$ with $\mathrm{E}\left[f\left(y_{u}\right)\right] \geq \mu \cdot \mathrm{E}\left[y_{u}\right]$ implies a μ-competitive algorithm.

Main Difficulty.

For example, let $f(y)=\min (1, y)$.
We know $\mathrm{E}\left[y_{u}\right]=\operatorname{Pr}[u \in \mathrm{OPT}] \in[0,1]$.
For any deterministic $y \in[0,1]$, we do have $f(y)=y$.
But y_{u} is a random variable.

Main Difficulty

Lemma.

Any unbiased estimators $y_{\mathrm{u}, \mathrm{j}}$ with $\mathrm{E}\left[f\left(y_{u}\right)\right] \geq \mu \cdot \mathrm{E}\left[y_{u}\right]$ implies a μ-competitive algorithm.

Main Difficulty.

For example, let $f(y)=\min (1, y)$.
We know $\mathrm{E}\left[y_{u}\right]=\operatorname{Pr}[u \in \mathrm{OPT}] \in[0,1]$.
For any deterministic $y \in[0,1]$, we do have $f(y)=y$.
But y_{u} is a random variable. It can be larger than 1 !

Main Difficulty

Function $f(y)$ is concave.

Main Difficulty

Function $f(y)$ is concave.
Suppose y_{u} is a even mixing of 0.2 and 1.5.

Main Difficulty

Function $f(y)$ is concave.
Suppose y_{u} is a even mixing of 0.2 and 1.5.

Main Difficulty

Same issue for other two functions.

$$
\mathrm{E}\left[f\left(y_{u}\right)\right] \ll f\left(\mathrm{E}\left[y_{u}\right]\right) \leq \mathrm{E}\left[y_{u}\right]
$$

Main Difficulty

Same issue for other two functions.

We must bound the spread of y_{u} !

Introduction

Our framework

> IID arrival

Algorithms / Analysis

Non-IID arrival

IID Arrival: Bounding Variance

Bound the spread of a random variable

Bound the variance of a random variable

IID Arrival: Bounding Variance

Bound the spread of a random variable

Bound the variance of a random variable

Lemma.

For any random variable y_{u} with variance σ and any (concave) function f, there exists a constant $\mu(\sigma, f)$ satisfying $\mathrm{E}\left[f\left(y_{u}\right)\right] \geq$ $\mu(\sigma, f) \cdot \mathrm{E}\left[y_{u}\right]$

IID Arrival: Tradeoff

Our Goal.

Design Unbiased Estimators $y_{u}=\sum_{j} y_{u, j}$ with minimal variance.

IID Arrival: Estimators

Our Goal.
Design Unbiased Estimators $y_{u}=\sum_{j} y_{u, j}$ with minimal variance.

Independent Estimators. $\mathrm{y}_{u, j}\left(t_{j}\right)=\operatorname{Pr}\left[(u, j) \in \mathrm{OPT} \mid t_{j}\right]$

IID Arrival: Estimators

Our Goal.
Design Unbiased Estimators $y_{u}=\sum_{j} y_{u, j}$ with minimal variance.

Independent Estimators. $\mathrm{y}_{u, j}\left(t_{j}\right)=\operatorname{Pr}\left[(u, j) \in \mathrm{OPT} \mid t_{j}\right]$
Fully-Correlated Estimators. $\mathrm{y}_{u, j}\left(t_{1}, t_{2}, \ldots, t_{j}\right)=\operatorname{Pr}\left[(u, j) \in \mathrm{OPT} \mid t_{1}, t_{2}, \ldots, t_{j}\right]$

IID Arrival: Windowed Estimators

Windowed Estimators. Fix the types of the last $j-i+1$ arrived vertices and resample the remaining types.
$j-i+1$ vertices

$$
\mathrm{y}_{u, j}^{[i]}\left(t_{i}, t_{i+1}, \ldots, t_{j}\right)=\operatorname{Pr}\left[(u, j) \in \mathrm{OPT} \mid t_{i}, t_{i+1}, \ldots, t_{j}\right]
$$

IID Arrival: Tradeoff

$$
\mathrm{E}_{\mathbf{t}}\left[y_{u}^{2}\right]=\sum_{j, k} \mathrm{E}_{\mathbf{t}_{\leq j, k}}\left[y_{u, j} \cdot y_{u, k}\right]
$$

IID Arrival: Tradeoff

$$
\mathrm{E}_{\mathbf{t}}\left[y_{u}^{2}\right]=\sum_{j, k} \mathrm{E}_{\mathbf{t}_{\leq j, k}}\left[y_{u, j} \cdot y_{u, k}\right]
$$

$y_{u, k}$ conditions on t_{j}

IID Arrival: Tradeoff

$$
\mathrm{E}_{\mathbf{t}}\left[y_{u}^{2}\right]=\sum_{j, k} \mathrm{E}_{\mathbf{t}_{\leq j, k}}\left[y_{u, j} \cdot y_{u, k}\right]
$$

IID Arrival: Tradeoff

$$
\mathrm{E}_{\mathbf{t}}\left[y_{u}^{2}\right]=\sum_{j, k} \mathrm{E}_{\mathbf{t}_{\leq j, k}}\left[y_{u, j} \cdot y_{u, k}\right]
$$

IID Arrival: Tradeoff

$$
\mathrm{E}_{\mathbf{t}}\left[y_{u}^{2}\right]=\sum_{j, k} \mathrm{E}_{\mathbf{t}_{\leq j, k}}\left[y_{u, j} \cdot y_{u, k}\right]
$$

IID Arrival: Tradeoff

$$
\mathrm{E}_{\mathbf{t}}\left[y_{u}^{2}\right]=\sum_{j, k} \mathrm{E}_{\mathbf{t}_{\leq j, k}}\left[y_{u, j} \cdot y_{u, k}\right]
$$

IID Arrival: Tradeoff

$$
\mathrm{E}_{\mathbf{t}}\left[y_{u}^{2}\right]=\sum_{j, k} \mathrm{E}_{\mathbf{t}_{\leq j, k}}\left[y_{u, j} \cdot y_{u, k}\right]
$$

Positive Correlation

IID Arrival: Mixing of Windowed Estimators

$\forall i \in[2, j]$

n
Our Estimators. The estimators we used is a linear combination of windowed estimators:

$$
y_{u, j}=\frac{\beta}{n} \sum_{i=2}^{j} y_{u, j}^{[i]}+\left(1-\frac{j-1}{n} \beta\right) y_{u, j}^{[1]}
$$

where $\beta=0.79$ is a optimized constant.

$$
\begin{array}{|l|l|l|l|l|l|}
\hline 1 & \ldots & \ldots & \ldots & \ldots & j \\
\hline
\end{array}
$$

Introduction

Our framework

> IID arrival

Algorithms / Analysis
Non-IID arrival

Non-IID: Independent Estimator is Optimal

$$
\text { Independent Estimators. } y_{u, j}=\operatorname{Pr}\left[(u, j) \in \mathrm{OPT} \mid t_{j}\right] \text {. }
$$

Proof Sketch.

1. For any fixed mean $\mathrm{E}\left[y_{u}\right]$, we characterize the worst-case distribution that minimizes $\mathrm{E}\left[f\left(y_{u}\right)\right]$.
2. Any unbiased estimator has the same performance under the worst-case distribution.

Thanks!

