(Fractional) Online Stochastic Matching via Fine-Grained Offline Statistics

Zhihao Gavin Tang¹ Hongxun Wu² Jinzhao Wu³

¹ ITCS, Shanghai University of Finance and Economics ² IIIS, Tsinghua University ³ CFCS, Peking University Introduction

Our framework

Algorithms / Analysis

[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]

- Vertices $u \in L$ are offline.
- Vertices $j \in R$ are **online**.

[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]

- Vertices $u \in L$ are **offline**.
- Vertices $j \in R$ are **online**.
 - Upon arrival, the set $t_j \in 2^L$ of its neighbors is sampled.
 - $t_j \sim D_j$. Distributions are known upfront.

[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]

- Vertices $u \in L$ are offline.
- Vertices $j \in R$ are **online**.
 - Upon arrival, the set $t_j \in 2^L$ of its neighbors is sampled.
 - $t_j \sim D_j$. Distributions are known upfront.

[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]

- Vertices $u \in L$ are offline.
- Vertices $j \in R$ are **online**.
 - Upon arrival, the set $t_j \in 2^L$ of its neighbors is sampled.
 - $t_j \sim D_j$. Distributions are known upfront.

[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]

- Vertices $u \in L$ are **offline**.
- Vertices $j \in R$ are **online**.
 - Upon arrival, the set $t_j \in 2^L$ of its neighbors is sampled.
 - $t_j \sim D_j$. Distributions are known upfront.

$$u_1$$
 1 $t_1 = \{u_1, u_2\}$
 u_2 2 $t_2 = \{u_2\}$

[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]

INPUT Bipartite graph $G = (L \cup R, E)$

- Vertices $u \in L$ are **offline**.
- Vertices $j \in R$ are **online**.
 - Upon arrival, the set $t_j \in 2^L$ of its neighbors is sampled.
 - $t_j \sim D_j$. Distributions are known upfront.

OUTPUT Algorithm must decide irrevocably matching for $j \in R$.

[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]

INPUT Bipartite graph $G = (L \cup R, E)$

- Vertices $u \in L$ are **offline**.
- Vertices $j \in R$ are **online**.
 - Upon arrival, the set $t_j \in 2^L$ of its neighbors is sampled.
 - $t_j \sim D_j$. Distributions are known upfront.

Goal

- Unweighted: Maximize the cardinality of the matching
- Vertex Weighted: Maximize the total weight of matched $u \in L$.

Competitive Ratio

Metric The ratio between algorithm and offline optimum.

$$\mu = \min_{G, D_1, D_2, \dots, D_n} \frac{\mathrm{E} \left[\mathrm{ALG}(G) \right]}{\mathrm{E} \left[\mathrm{OPT}(G) \right]}$$

Previous Works

• **IID arrival:** Type distributions D_j are the same for all $j \in R$.

Arrival	Goal	Ratio	
IID	Unweighted	0.711	[Huang and Shu, 2021]
	Vertex-weighted	0.701	
Non-IID	Vertex-weighted	1 — 1/e ≈ 0.632	[Aggarwal, Goel, Karande, and Mehta, 2011]

Our Results

• **IID arrival:** Type distributions D_j are the same for all $j \in R$.

Arrival	Goal	Ratio	Ours
IID	Unweighted	0.711	0.704
	Vertex-weighted	0.701	
Non-IID	Vertex-weighted	$\begin{array}{l} 1 - 1/e \\ \approx 0.632 \end{array}$	0.666

Our Results

• **IID arrival:** Type distributions D_j are the same for all $j \in R$.

Arrival	Goal	Ratio	Ours
IID	Unweighted	0.711	0.704
	Vertex-weighted	0.701	
Non-IID	Vertex-weighted	$\begin{array}{l} 1 - 1/e \\ \approx 0.632 \end{array}$	0.666

Parallel to our work, Huang, Shu, and Yan improved the ratio for IID vertex-weighted setting to 0.716 .

- Warm up: One Choices Algorithm
 - When *j* arrives, we sample **one** neighbor of it.
 - For each neighbor *u*,

it is sampled with probability $Pr[(u, j) \in OPT | t_j]$.

- Warm up: One Choices Algorithm
 - When *j* arrives, we sample **one** neighbor of it.
 - For each neighbor u,
 - it is sampled with probability $Pr[(u, j) \in OPT | t_j]$.
 - Then we try to match *j* with the sampled neighbor.

- Warm up: One Choices Algorithm
 - When *j* arrives, we sample **one** neighbor of it.
 - For each neighbor *u*,
 - it is sampled with probability $Pr[(u, j) \in OPT | t_j]$.
 - Then we try to match *j* with the sampled neighbor.

• In total, We try each (u, j) with probability $p_{u,j} = \Pr[(u, j) \in OPT]$.

- Warm up: One Choices Algorithm
 - When *j* arrives, we sample **one** neighbor of it.
 - For each neighbor *u*,
 - it is sampled with probability $Pr[(u, j) \in OPT | t_j]$.
 - Then we try to match *j* with the sampled neighbor.

- In total, We try each (u, j) with probability $p_{u,j} = \Pr[(u, j) \in OPT]$.
- Define $p_u \coloneqq \sum_j p_{u,j} = \Pr[u \in \text{OPT}].$

- Warm up: One Choices Algorithm
 - When *j* arrives, we sample **one** neighbor of it.
 - For each neighbor *u*,
 - it is sampled with probability $Pr[(u, j) \in OPT | t_j]$.
 - Then we try to match *j* with the sampled neighbor.

- In total, We try each (u, j) with probability $p_{u,j} = \Pr[(u, j) \in OPT]$.
- Define $p_u \coloneqq \sum_j p_{u,j} = \Pr[u \in \text{OPT}].$
- Pr [$u \in ALG$] = 1 $\prod_{j} (1 p_{u,j}) \ge 1 e^{-p_u} \ge (1 \frac{1}{e}) p_u$

- Warm up: One Choices Algorithm
 - Define $p_u \coloneqq \Pr[u \in OPT] = \sum_j p_{u,j}$.
 - Pr [$u \in ALG$] $\geq \left(1 \frac{1}{e}\right)p_u$

$$E[ALG] \ge \sum_{u} w_{u} \cdot \Pr[u \in ALG]$$
$$\ge \left(1 - \frac{1}{e}\right) \sum_{u} w_{u} p_{u}$$
$$= \left(1 - \frac{1}{e}\right) E[OPT]$$

[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]
[Manshadi, Gharan, and Saberi, 2012]
[Jaillet and Lu, 2014]
[Brubach, Sankararaman, Srinivasan, and Xu, 2016]
[Huang and Shu, 2021]

[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]
[Manshadi, Gharan, and Saberi, 2012]
[Jaillet and Lu, 2014]
[Brubach, Sankararaman, Srinivasan, and Xu, 2016]
[Huang and Shu, 2021]

[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]
[Manshadi, Gharan, and Saberi, 2012]
[Jaillet and Lu, 2014]
[Brubach, Sankararaman, Srinivasan, and Xu, 2016]
[Huang and Shu, 2021]

[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]
[Manshadi, Gharan, and Saberi, 2012]
[Jaillet and Lu, 2014]
[Brubach, Sankararaman, Srinivasan, and Xu, 2016]
[Huang and Shu, 2021]

Key Idea: Multiway Online Selection.

[Gao, He, Huang, Nie, Yuan, and Zhong, 2021] [Blanc and Charikar, 2021]

[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]
[Manshadi, Gharan, and Saberi, 2012]
[Jaillet and Lu, 2014]
[Brubach, Sankararaman, Srinivasan, and Xu, 2016]
[Huang and Shu, 2021]

Key Idea: Multiway Online Selection.

[Gao, He, Huang, Nie, Yuan, and Zhong, 2021]

[Blanc and Charikar, 2021]

Parallel to our work, Huang, Shu, and Yan also exploit the power of multi-selection.

Introduction

Our framework

Algorithms / Analysis

• $\sum_{u} y_{u,j} \leq 1$.

- $\sum_{u} y_{u,j} \leq 1$.
- y_{u,j} = 0 if there is no such edge,
 i.e. u ∉ t_j

- We define $y_u \coloneqq \sum_j y_{u,j}$.
- The weight of fractional matching is defined as $FRAC: = \sum_{u} w_{u} \cdot \min(y_{u}, 1)$

Independent Rounding

For each $j \in R$, we sample **one** neighbor and try. Each neighbor u is sampled with probability $y_{u,j}$

Independent Rounding

For each $j \in R$, we sample **one** neighbor and try. Each neighbor u is sampled with probability $y_{u,j}$

Rounding with Online Correlated Selection

[Gao, He, Huang, Nie, Yuan, and Zhong, 2021] [Blanc and Charikar, 2021]

For each $j \in R$, we apply OCS with y_j as input.

Rounding with Online Correlated Selection

0

 $y_{2,2}$

 $y_{3,2}$

[Gao, He, Huang, Nie, Yuan, and Zhong, 2021] [Blanc and Charikar, 2021]

For each $j \in R$, we apply OCS with y_j as input.

• The weight of matching afterward is $\sum w_u \cdot (1 - e^{-y_u - 0.5 y_u^2 - 0.17 y_u^3})$

Our Framework

Lemma.

Let $y_u = \sum_j y_{u,j}$. The algorithm would achieve performance $\sum_u w_u \cdot f(y_u)$ where $f = \begin{cases} \min(1, y_u) \text{ for fractional matching} \end{cases}$
Our Framework

Lemma.

Let $y_u = \sum_j y_{u,j}$. The algorithm would achieve performance $\sum_u w_u \cdot f(y_u)$ where

$$f = \begin{cases} \min(1, y_u) \text{ for fractional matching} \\ 1 - e^{-y_u} \text{ with independent rounding} \end{cases}$$

Our Framework

Lemma.

Let $y_u = \sum_j y_{u,j}$. The algorithm would achieve performance $\sum_u w_u \cdot f(y_u)$

where

 $f = \begin{cases} \min(1, y_u) \text{ for fractional matching} \\ 1 - e^{-y_u - 0.5y_u^2 - 0.18y_u^3} \text{ with OCS rounding} \\ 1 - e^{-y_u} \text{ with independent rounding} \end{cases}$

Introduction

Our framework

Algorithms / Analysis

Example. When apply $y_{u,j} = \Pr[(u,j) \in OPT | t_j]$ and independent sampling, we get exactly one-choice algorithm. (**Independent Estimators**)

Example. When apply $y_{u,j} = \Pr[(u,j) \in OPT | t_j]$ and independent sampling, we get exactly one-choice algorithm. (**Independent Estimators**)

We consider fractional algorithm with **unbiased estimators**.

Example. When apply $y_{u,j} = \Pr[(u,j) \in OPT | t_j]$ and independent sampling, we get exactly one-choice algorithm. (**Independent Estimators**)

We consider fractional algorithm with **unbiased estimators**.

Example. When apply $y_{u,j} = \Pr[(u,j) \in OPT | t_j]$ and independent sampling, we get exactly one-choice algorithm. (**Independent Estimators**)

We consider fractional algorithm with **unbiased estimators**.

•
$$\sum_{u} y_{u,j} \leq 1$$
.

Example. When apply $y_{u,j} = \Pr[(u,j) \in OPT | t_j]$ and independent sampling, we get exactly one-choice algorithm. (**Independent Estimators**)

We consider fractional algorithm with **unbiased estimators**.

- $\sum_{u} y_{u,j} \leq 1$.
- $y_{u,j} = 0$ if there is no such edge.

Example. When apply $y_{u,j} = \Pr[(u,j) \in OPT | t_j]$ and independent sampling, we get exactly one-choice algorithm. (**Independent Estimators**)

We consider fractional algorithm with **unbiased estimators**.

- $\sum_{u} y_{u,j} \leq 1$.
- $y_{u,j} = 0$ if there is no such edge.

•
$$y_u = \sum_j y_{u,j}$$
 has $E[y_u] = Pr[u \in OPT]$

Lemma.

Any **unbiased estimators** $y_{u,j}$ with $E[f(y_u)] \ge \mu \cdot E[y_u]$ implies a μ -competitive algorithm.

Lemma.

Any **unbiased estimators** $y_{u,j}$ with $E[f(y_u)] \ge \mu \cdot E[y_u]$ implies a μ -competitive algorithm.

Proof

$$E[ALG] = E\left[\sum_{u} f(y_{u}) \cdot w_{u}\right] \ge \mu \cdot \sum_{u} E[y_{u}] \cdot w_{u}$$

$$= \mu \cdot \sum_{u} \Pr[u \in OPT] \cdot w_{u} = \mu \cdot E[OPT]$$

Lemma.

Any **unbiased estimators** $y_{u,j}$ with $E[f(y_u)] \ge \mu \cdot E[y_u]$ implies a μ -competitive algorithm.

Main Difficulty. For example, let f(y) = min(1, y).

Lemma.

Any **unbiased estimators** $y_{u,j}$ with $E[f(y_u)] \ge \mu \cdot E[y_u]$ implies a μ -competitive algorithm.

Main Difficulty.

For example, let $f(y) = \min(1, y)$.

We know $E[y_u] = Pr[u \in OPT] \in [0,1]$. For any **deterministic** $y \in [0,1]$, we do have f(y) = y.

Lemma.

Any **unbiased estimators** $y_{u,j}$ with $E[f(y_u)] \ge \mu \cdot E[y_u]$ implies a μ -competitive algorithm.

Main Difficulty.

For example, let $f(y) = \min(1, y)$.

We know $E[y_u] = Pr[u \in OPT] \in [0,1]$. For any **deterministic** $y \in [0,1]$, we do have f(y) = y. But y_u is a **random variable**.

Lemma.

Any **unbiased estimators** $y_{u,j}$ with $E[f(y_u)] \ge \mu \cdot E[y_u]$ implies a μ -competitive algorithm.

Main Difficulty.

For example, let $f(y) = \min(1, y)$.

We know $E[y_u] = Pr[u \in OPT] \in [0,1]$. For any **deterministic** $y \in [0,1]$, we do have f(y) = y. But y_u is a **random variable**. It can be larger than 1!

Function f(y) is **concave**.

Same issue for other two functions.

Introduction

Our framework

IID arrival

Algorithms / Analysis

Non-IID arrival

IID Arrival: Bounding Variance

Bound the **spread** of a random variable

Bound the **variance** of a random variable

IID Arrival: Bounding Variance

Bound the **spread** of a random variable

Bound the **variance** of a random variable

Lemma.

For any random variable y_u with variance σ and any (concave) function f, there exists a constant $\mu(\sigma, f)$ satisfying $\mathbb{E}[f(y_u)] \ge \mu(\sigma, f) \cdot \mathbb{E}[y_u]$

IID Arrival: Tradeoff

Our Goal.

Design Unbiased Estimators $y_u = \sum_j y_{u,j}$ with minimal variance.

IID Arrival: Estimators

Our Goal.

Design Unbiased Estimators $y_u = \sum_j y_{u,j}$ with minimal variance.

Independent Estimators. $y_{u,j}(t_j) = \Pr[(u,j) \in OPT | t_j]$

IID Arrival: Estimators

Our Goal.

Design Unbiased Estimators $y_u = \sum_j y_{u,j}$ with minimal variance.

Independent Estimators. $y_{u,j}(t_j) = \Pr[(u,j) \in OPT | t_j]$

Fully-Correlated Estimators. $y_{u,j}(t_1, t_2, ..., t_j) = \Pr[(u, j) \in OPT | t_1, t_2, ..., t_j]$

IID Arrival: Windowed Estimators

i j - i + 1 vertices i j - i + 1 vertices i j $Pr[(u, v_i) \in OPT]$

Windowed Estimators. Fix the types of the last j - i + 1 arrived vertices and resample the remaining types.

$$y_{u,j}^{[i]}(t_i, t_{i+1}, ..., t_j) = \Pr[(u, j) \in OPT \mid t_i, t_{i+1}, ..., t_j]$$

IID Arrival: Tradeoff $E_{\mathbf{t}}[y_{u}^{2}] = \sum_{j,k} E_{\mathbf{t} \leq j,k} [y_{u,j} \cdot y_{u,k}]$

IID Arrival: Mixing of Windowed Estimators

$$1 \cdots i \cdots j \qquad \swarrow \qquad \frac{\beta}{n}$$
$$\forall i \in [2, j]$$

Our Estimators. The estimators we used is a linear combination of windowed estimators:

$$y_{u,j} = \frac{\beta}{n} \sum_{i=2}^{j} y_{u,j}^{[i]} + \left(1 - \frac{j-1}{n}\beta\right) y_{u,j}^{[1]}$$

where $\beta = 0.79$ is a optimized constant.

Introduction

Our framework

IID arrival

Algorithms / Analysis

Non-IID arrival
Non-IID: Independent Estimator is Optimal

Independent Estimators. $y_{u,j} = \Pr[(u, j) \in OPT | t_j]$.

Proof Sketch.

- 1. For any fixed mean $E[y_u]$, we characterize the **worst-case** distribution that minimizes $E[f(y_u)]$.
- 2. Any unbiased estimator has the same performance under the worst-case distribution.

Thanks!