
(Fractional) Online Stochastic Matching via 

Fine-Grained Offline Statistics 

Zhihao Gavin Tang
1     

Hongxun Wu
2     

Jinzhao Wu
3

1 
ITCS, Shanghai University of Finance and Economics

2 
IIIS, Tsinghua University

3 
CFCS, Peking University



Our framework

Algorithms / Analysis

Introduction



INPUT Bipartite graph ! = # ∪ %, '
• Vertices ( ∈ # are offline.
• Vertices * ∈ % are online.

Online Stochastic Matching
[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]



INPUT Bipartite graph ! = # ∪ %, '
• Vertices ( ∈ # are offline.
• Vertices * ∈ % are online.

• Upon arrival, the set t, ∈ 2. of its neighbors is sampled.
• /0 ∼ 20. Distributions are known upfront.

Online Stochastic Matching
[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]



INPUT Bipartite graph ! = # ∪ %, '
• Vertices ( ∈ # are offline.
• Vertices * ∈ % are online.

• Upon arrival, the set t, ∈ 2. of its neighbors is sampled.
• /0 ∼ 20. Distributions are known upfront.

Online Stochastic Matching

(3

(3(4

[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]



INPUT Bipartite graph ! = # ∪ %, '
• Vertices ( ∈ # are offline.
• Vertices * ∈ % are online.

• Upon arrival, the set t, ∈ 2. of its neighbors is sampled.
• /0 ∼ 20. Distributions are known upfront.

Online Stochastic Matching

(3

(3

1

(5

/3 = {(3, (5}

[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]



INPUT Bipartite graph ! = # ∪ %, '
• Vertices ( ∈ # are offline.
• Vertices * ∈ % are online.

• Upon arrival, the set t, ∈ 2. of its neighbors is sampled.
• /0 ∼ 20. Distributions are known upfront.

Online Stochastic Matching

(3

(3

1

(5

/3 = {(3, (5}

2 /5 = {(5}

[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]



INPUT Bipartite graph ! = # ∪ %, '
• Vertices ( ∈ # are offline.
• Vertices * ∈ % are online.

• Upon arrival, the set t, ∈ 2. of its neighbors is sampled.
• /0 ∼ 20. Distributions are known upfront.

OUTPUT Algorithm must decide irrevocably matching for * ∈ %.
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INPUT Bipartite graph ! = # ∪ %, '
• Vertices ( ∈ # are offline.
• Vertices * ∈ % are online.

• Upon arrival, the set t, ∈ 2. of its neighbors is sampled.

• /0 ∼ 20. Distributions are known upfront.

Goal
• Unweighted: Maximize the cardinality of the matching

• Vertex Weighted: Maximize the total weight of matched u ∈ #.

Online Stochastic Matching

[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]



Competitive Ratio

Metric The ratio between algorithm and offline optimum.

! = min&,(),(*,⋯,(,
E [ ALG 2 ]
E [ OPT(2) ]



Previous Works

• IID arrival: Type distributions !" are the same for all # ∈ %. 

Arrival Goal Ratio

IID Unweighted 0.711 [Huang and Shu, 

2021]

Vertex-weighted 0.701
Non-IID Vertex-weighted 1 − 1/,

≈ 0.632
[Aggarwal, Goel, 

Karande, and 

Mehta, 2011]
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Our Results

• IID arrival: Type distributions !" are the same for all # ∈ %. 

Arrival Goal Ratio Ours

IID Unweighted 0.711 0.704

Vertex-weighted 0.701
Non-IID Vertex-weighted 1 − 1/-

≈ 0.632 0.666

Parallel to our work, Huang, Shu, and Yan improved the ratio for IID vertex-weighted setting 

to 0.716 . 
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• Warm up: One – Choices Algorithm
• When ( arrives, we sample one neighbor of it.
• For each neighbor !,

it is sampled with probability Pr !, ( ∈ OPT /0 ].
• Then we try to match ( with the sampled neighbor.

• In total, We try each (!, () with probability 56,0 = Pr[ !, ( ∈ OPT].
• Define 56 ≔ ∑0 56,0 = Pr ! ∈ OPT .
• Pr ! ∈ ALG = 1 − ∏0 1 − 56,0 ≥ 1 − ABCD ≥ 1 − "

E 56
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• Warm up: One – Choices Algorithm
• Define () ≔ Pr ! ∈ OPT = ∑2 (),2 .
• Pr ! ∈ ALG ≥ 1 − "

: ()

E ALG ≥<
)
=) ⋅ Pr ! ∈ ?@A

≥ 1 − 1B <
)
=)()

= 1 − 1B E[OPT]
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• Previous approach: Two – Choice Algorithm

[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]

[Manshadi, Gharan, and Saberi, 2012]

[Jaillet and Lu, 2014]

[Brubach, Sankararaman, Srinivasan, and Xu, 2016]

[Huang and Shu, 2021]

Key Idea: Multiway Online Selection.

[Gao, He, Huang, Nie, Yuan, and Zhong, 2021]

[Blanc and Charikar, 2021]
Parallel to our work, Huang, Shu, and Yan also exploit the power of multi-selection. 
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Upon the arrival of each * ∈ ,, the algorithm matches it
with each ! ∈ - with fraction &.,/.

• We define &. ≔ ∑/ &.,/ .
• The weight of fractional matching
is defined as

FRAC:=9
.
:. ⋅ min(&., 1)
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For each * ∈ ,, we sample one neighbor and try.
Each neighbor ! is sampled with probability &-,.

Independent Rounding
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• The weight of matching afterward
is

/
-
0- ⋅ 1 −3

.
1 − &-,.

=/
-
0- ⋅ (1 − 6789)
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[Gao, He, Huang, Nie, Yuan, and Zhong, 2021] [Blanc and Charikar, 2021]

For each * ∈ ,, we apply OCS with &- as input.



!"

!#

!$

1 &","

0

2 &#,#

0
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• The weight of matching afterward

is

*
+
,+ ⋅ 1 − /01203.5 12603."7 12

8

[Gao, He, Huang, Nie, Yuan, and Zhong, 2021] [Blanc and Charikar, 2021]

For each 9 ∈ ;, we apply OCS with &< as input.
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1 − #$%& with independent rounding

Our Framework

Lemma.
Let '( = ∑+ '(,+ . The algorithm would achieve performance

.
(
/( ⋅ 1('()

where

1 = 4 1 − #$%&$5.6%&7$5.89 %&: with OCS rounding
min 1, '( for fractional matching
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Unbiased Estimators

Example. When apply !",$ = Pr (, ) ∈ OPT -$] and independent sampling, we get
exactly one-choice algorithm. (Independent Estimators)

We consider fractional algorithm with unbiased estimators.

Estimators { !",$ -0, -1, … , -$ }"∈4,$∈5 are unbiased if

• ∑"!",$ ≤ 1. 

• !",$ = 0 if there is no such edge.

• !" = ∑$ !",$ has E !" = Pr[ ( ∈ OPT ]
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Main Difficulty

Proof
E ALG = E &

'
( )' ⋅ +' ≥ - ⋅&

'
.[)'] ⋅ +'

= - ⋅&
'
Pr 3 ∈ 567 ⋅ +' = - ⋅ E[ OPT ]

Lemma.

Any unbiased estimators ):,< with E (()') ≥ - ⋅ E[ )' ] implies 
a --competitive algorithm.
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Main Difficulty

Lemma.

Main Difficulty.

We know E "# = Pr ' ∈ OPT ∈ 0,1 .
For any deterministic y ∈ [0,1], we do have 1 " = ".
But "# is a random variable.
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Main Difficulty

Lemma.

Main Difficulty.

We know E "# = Pr ' ∈ OPT ∈ 0,1 .
For any deterministic y ∈ [0,1], we do have 1 " = ".
But "# is a random variable. It can be larger than 1!

Any unbiased estimators "2,3 with E 1("#) ≥ 7 ⋅ E[ "# ] implies 
a 7-competitive algorithm.

For example, let 1 " = min(1, ").
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Function !(#) is concave.  
Suppose #% is a even mixing of  0.2 and 1.5.
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Main Difficulty
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Main Difficulty
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IID Arrival: Bounding Variance

Bound the spread of 
a random variable

Lemma.

Bound the variance of 
a random variable

For any random variable !" with variance # and any (concave) 
function $, there exists a constant %(#, $) satisfying E $(!*) ≥
%(#, $) ⋅ E[ !* ]



IID Arrival: Tradeoff

Our Goal.
Design Unbiased Estimators !" = ∑% !",% with minimal variance.



IID Arrival: Estimators

Our Goal.
Design Unbiased Estimators !" = ∑% !",% with minimal variance.

Independent Estimators. y",%()%) = Pr -, . ∈ OPT )%]



IID Arrival: Estimators

Our Goal.
Design Unbiased Estimators !" = ∑% !",% with minimal variance.

Independent Estimators. y",%()%) = Pr -, . ∈ OPT )%]

Fully-Correlated Estimators. y",% )3, )4, … , )% = Pr -, . ∈ OPT )3, )4, … , )%]



IID Arrival: Windowed Estimators

!

…
…

"

" − 1

%

" − % + 1 vertices

Pr[(!, ,-) ∈ OPT]

Windowed Estimators. Fix the types of the last 
" − % + 1 arrived vertices and resample the 
remaining types.

y4,-
[5] (65, 6578, … , 6-) = Pr !, " ∈ OPT 65, 6578, … , 6-]
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!",$ conditions on %&

1 ··· ··· ··· ··· '

1 ··· ··· ··· ··· '

E) !"* =,
&,$

E)-.,/ [!",& ⋅ !",$]

··· 1 ··· ··· ··· '3

1 ··· ··· ··· '3

··· 4

!",$ and !",& both condition on %5

Positive Correlation
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IID Arrival: Mixing of Windowed Estimators

1 ··· ··· ··· !

1 ··· ··· ··· ··· !

"
#

1 − &'(
) "

∀+ ∈ [2, !]
Our Estimators. The estimators we used is a 
linear combination of windowed estimators:

12,& =
"
#4567

&
12,&
[5] + 1 − ! − 1# " 12,&

[(]

where	" = 0.79 is a optimized constant.

+
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Non-IID: Independent Estimator is Optimal

Independent Estimators. !",$ = Pr (, ) ∈ OPT -$].

Proof Sketch.

1. For any fixed mean E[ !" ], we characterize the worst-case distribution 
that minimizes E[ 1(!") ].

2. Any unbiased estimator has the same performance under the worst-case 
distribution.



Thanks!


