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Online Stochastic Matching
[Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]

INPUT Bipartite graph G = (L UR,E)
* \Vertices u € L are offline.

* Vertices j € R are online.
* Upon arrival, the set t; € 2L of its neighbors is sampled.
* t;j ~ D;. Distributions are known upfront.

Goal
* Unweighted: Maximize the cardinality of the matching
* Vertex Weighted: Maximize the total weight of matched u € L.



Competitive Ratio

Metric The ratio between algorithm and offline optimum.
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Previous Works

* IID arrival: Type distributions D; are the same for all j € R.
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Our Results

* IID arrival: Type distributions D; are the same for all j € R.

Unweighted 0.711 0.704
Vertex-weighted 0.701
Non-IID Vertex-weighted 1—1/e
~ 0.632 0.666

Parallel to our work, Huang, Shu, and Yan improved the ratio for |ID vertex-weighted setting
to 0.716 .
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it is sampled with probability Pr [ (u,j) € OPT | ¢; ].
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* Warm up: One — Choices Algorithm
* Define py == Prlu € OPT] = X ;py ;-

+ Priu€ALG] 2 (1-3)p,
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* Previous approach: Two — Choice Algorithm
Feldman, Mehta, Mirrokni, and Muthukrishnan, 2009]
'Manshadi, Gharan, and Saberi, 2012]

Jalllet and Lu, 2014]

Brubach, Sankararaman, Srinivasan, and Xu, 2016]
'Huang and Shu, 2021]

Key Idea: Multiway Online Selection.
|Gao, He, Huang, Nie, Yuan, and Zhong, 2021]
[Blanc and Charikar, 2021]

Parallel to our work, Huang, Shu, and Yan also exploit the power of multi-selection.
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Fractional Matching

Upon the arrival of each j € R, the algorithm matches it
with each u € L with fraction y, ;.

Vi1 0 * We define yy, = 2 Yu,j -
* The weight of fractional matching
Is defined as

Y21 Y22 FRAC: = z wy, - min(yy, 1)
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Independent Rounding

For each j € R, we sample one neighbor and try.
Each neighbor u is sampled with probability y,, ;

@ Y11 0"« The weight of matching afterward
IS
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Rounding with Online Correlated Selection
|Gao, He, Huang, Nie, Yuan, and Zhong, 2021] [Blanc and Charikar, 2021]

For each j € R, we apply OCS with y; as input.
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Rounding with Online Correlated Selection
|Gao, He, Huang, Nie, Yuan, and Zhong, 2021] [Blanc and Charikar, 2021]

For each j € R, we apply OCS with y; as input.

° V1,1 0
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* The weight of matching afterward
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Unblased Estimators

Example. When apply y,, ; = Pr[(u,j) € OPT | t;] and independent sampling, we get
exactly one-choice algorithm. (Independent Estimators)

We consider fractional algorithm with unbiased estimators.

Estimators { ¥y, (t1, t2, -, t;) Juer jer are unbiased if

* Zuyu,j <1

* yu,j = 01f there is no such edge.

* Yu = 2 Yuj has E[y,] = Pr[u € OPT ]
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Main Difficulty

Lemma.

Any unbiased estimators y,; with E[ f(3n,) | = p - E[ 4, ] implies
a u-competitive algorithm.

Main Difficulty.
For example, let f(y) = min(1, y).

We know E[ y,, ] = Pr[u € OPT] € [0,1].
For any deterministic y € [0,1], we do have f(y) = y.
But y,, 1s a random variable. It can be larger than 1!
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Main Difficulty

Function f(y) is concave.
Suppose y, Is a even mixing of 0.2 and 1.5.

f(x)

1.0 —
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Main Difficulty

Same iIssue for other two functions.

f(x)

0.8}

We must bound the spread of y,, !
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1D Arrival: Bounding Variance
Bound the spread of Bound the variance of
a random variable ‘ a random variable

Lemma.

For any random variable y, with variance o and any (concave)

function f, there exists a constant u(ao, f) satisfying E[ f(y,) | =
u(o, f) -E[y ]
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IID Arrival: Estimators

Our Goal.

Design Unbiased Estimators y,, = Zj Yu,j With minimal variance.

Independent Estimators. y, ;(t;) = Pr[(u,j) € OPT | ¢;]

Fully-Correlated Estimators. y,, ;(t1, ty, ..., tj) = Pr[(u,j) € OPT | ty, ty, ..., ;]



D Arrival: Windowed Estimators

Windowed Estimators. Fix the types of the last
‘ J — 1+ 1 arrived vertices and resample the
remaining types.

0 Jj — i+ 1 vertices

Q YB,]]'(ti» ti+1' e t]) = Pr[(u,j) € OPT | ti, ti+1' e t]]

Pr[(u, v;) € OPT] 0
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1D Arrival: Mixing of Windowed Estimators

Our Estimators. The estimators we used Is a
Vi€ [2,]] linear combination of windowed estimators:

j

p [i] J=1 N\

yu,j = ;Z yu,j + (1 — Tﬁ) yu,j
=2

where f = 0.79 is a optimized constant.
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Non-IID: Independent Estimator is Optimal

Independent Estimators. y,, ; = Pr[(u,j) € OPT | ¢;].

Proof Sketch.

1. For any fixed mean E[ y, ], we characterize the worst-case distribution
that minimizes E[ f () |.

2. Any unbiased estimator has the same performance under the worst-case
distribution.




Thanks!



